Metamath Proof Explorer


Theorem xmetec

Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj , infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 ˙=D-1
Assertion xmetec D∞MetXPXP˙=PballD+∞

Proof

Step Hyp Ref Expression
1 xmeter.1 ˙=D-1
2 1 xmeterval D∞MetXP˙xPXxXPDx
3 3anass PXxXPDxPXxXPDx
4 3 baib PXPXxXPDxxXPDx
5 2 4 sylan9bb D∞MetXPXP˙xxXPDx
6 vex xV
7 6 a1i D∞MetXxV
8 elecg xVPXxP˙P˙x
9 7 8 sylan D∞MetXPXxP˙P˙x
10 xblpnf D∞MetXPXxPballD+∞xXPDx
11 5 9 10 3bitr4d D∞MetXPXxP˙xPballD+∞
12 11 eqrdv D∞MetXPXP˙=PballD+∞