Metamath Proof Explorer


Theorem xpchom

Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpchomfval.t T = C × c D
xpchomfval.y B = Base T
xpchomfval.h H = Hom C
xpchomfval.j J = Hom D
xpchomfval.k K = Hom T
xpchom.x φ X B
xpchom.y φ Y B
Assertion xpchom φ X K Y = 1 st X H 1 st Y × 2 nd X J 2 nd Y

Proof

Step Hyp Ref Expression
1 xpchomfval.t T = C × c D
2 xpchomfval.y B = Base T
3 xpchomfval.h H = Hom C
4 xpchomfval.j J = Hom D
5 xpchomfval.k K = Hom T
6 xpchom.x φ X B
7 xpchom.y φ Y B
8 simpl u = X v = Y u = X
9 8 fveq2d u = X v = Y 1 st u = 1 st X
10 simpr u = X v = Y v = Y
11 10 fveq2d u = X v = Y 1 st v = 1 st Y
12 9 11 oveq12d u = X v = Y 1 st u H 1 st v = 1 st X H 1 st Y
13 8 fveq2d u = X v = Y 2 nd u = 2 nd X
14 10 fveq2d u = X v = Y 2 nd v = 2 nd Y
15 13 14 oveq12d u = X v = Y 2 nd u J 2 nd v = 2 nd X J 2 nd Y
16 12 15 xpeq12d u = X v = Y 1 st u H 1 st v × 2 nd u J 2 nd v = 1 st X H 1 st Y × 2 nd X J 2 nd Y
17 1 2 3 4 5 xpchomfval K = u B , v B 1 st u H 1 st v × 2 nd u J 2 nd v
18 ovex 1 st X H 1 st Y V
19 ovex 2 nd X J 2 nd Y V
20 18 19 xpex 1 st X H 1 st Y × 2 nd X J 2 nd Y V
21 16 17 20 ovmpoa X B Y B X K Y = 1 st X H 1 st Y × 2 nd X J 2 nd Y
22 6 7 21 syl2anc φ X K Y = 1 st X H 1 st Y × 2 nd X J 2 nd Y