Metamath Proof Explorer


Theorem xpchom

Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpchomfval.t T=C×cD
xpchomfval.y B=BaseT
xpchomfval.h H=HomC
xpchomfval.j J=HomD
xpchomfval.k K=HomT
xpchom.x φXB
xpchom.y φYB
Assertion xpchom φXKY=1stXH1stY×2ndXJ2ndY

Proof

Step Hyp Ref Expression
1 xpchomfval.t T=C×cD
2 xpchomfval.y B=BaseT
3 xpchomfval.h H=HomC
4 xpchomfval.j J=HomD
5 xpchomfval.k K=HomT
6 xpchom.x φXB
7 xpchom.y φYB
8 simpl u=Xv=Yu=X
9 8 fveq2d u=Xv=Y1stu=1stX
10 simpr u=Xv=Yv=Y
11 10 fveq2d u=Xv=Y1stv=1stY
12 9 11 oveq12d u=Xv=Y1stuH1stv=1stXH1stY
13 8 fveq2d u=Xv=Y2ndu=2ndX
14 10 fveq2d u=Xv=Y2ndv=2ndY
15 13 14 oveq12d u=Xv=Y2nduJ2ndv=2ndXJ2ndY
16 12 15 xpeq12d u=Xv=Y1stuH1stv×2nduJ2ndv=1stXH1stY×2ndXJ2ndY
17 1 2 3 4 5 xpchomfval K=uB,vB1stuH1stv×2nduJ2ndv
18 ovex 1stXH1stYV
19 ovex 2ndXJ2ndYV
20 18 19 xpex 1stXH1stY×2ndXJ2ndYV
21 16 17 20 ovmpoa XBYBXKY=1stXH1stY×2ndXJ2ndY
22 6 7 21 syl2anc φXKY=1stXH1stY×2ndXJ2ndY