Metamath Proof Explorer


Theorem xpcid

Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpccat.t T=C×cD
xpccat.c φCCat
xpccat.d φDCat
xpccat.x X=BaseC
xpccat.y Y=BaseD
xpccat.i I=IdC
xpccat.j J=IdD
xpcid.1 1˙=IdT
xpcid.r φRX
xpcid.s φSY
Assertion xpcid φ1˙RS=IRJS

Proof

Step Hyp Ref Expression
1 xpccat.t T=C×cD
2 xpccat.c φCCat
3 xpccat.d φDCat
4 xpccat.x X=BaseC
5 xpccat.y Y=BaseD
6 xpccat.i I=IdC
7 xpccat.j J=IdD
8 xpcid.1 1˙=IdT
9 xpcid.r φRX
10 xpcid.s φSY
11 df-ov R1˙S=1˙RS
12 1 2 3 4 5 6 7 xpccatid φTCatIdT=xX,yYIxJy
13 12 simprd φIdT=xX,yYIxJy
14 8 13 eqtrid φ1˙=xX,yYIxJy
15 simprl φx=Ry=Sx=R
16 15 fveq2d φx=Ry=SIx=IR
17 simprr φx=Ry=Sy=S
18 17 fveq2d φx=Ry=SJy=JS
19 16 18 opeq12d φx=Ry=SIxJy=IRJS
20 opex IRJSV
21 20 a1i φIRJSV
22 14 19 9 10 21 ovmpod φR1˙S=IRJS
23 11 22 eqtr3id φ1˙RS=IRJS