Metamath Proof Explorer


Theorem xpsxmet

Description: A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses xpsds.t ⊒T=R×𝑠S
xpsds.x ⊒X=BaseR
xpsds.y ⊒Y=BaseS
xpsds.1 βŠ’Ο†β†’R∈V
xpsds.2 βŠ’Ο†β†’S∈W
xpsds.p ⊒P=dist⁑T
xpsds.m ⊒M=dist⁑Rβ†ΎXΓ—X
xpsds.n ⊒N=dist⁑Sβ†ΎYΓ—Y
xpsds.3 βŠ’Ο†β†’M∈∞Met⁑X
xpsds.4 βŠ’Ο†β†’N∈∞Met⁑Y
Assertion xpsxmet βŠ’Ο†β†’P∈∞Met⁑XΓ—Y

Proof

Step Hyp Ref Expression
1 xpsds.t ⊒T=R×𝑠S
2 xpsds.x ⊒X=BaseR
3 xpsds.y ⊒Y=BaseS
4 xpsds.1 βŠ’Ο†β†’R∈V
5 xpsds.2 βŠ’Ο†β†’S∈W
6 xpsds.p ⊒P=dist⁑T
7 xpsds.m ⊒M=dist⁑Rβ†ΎXΓ—X
8 xpsds.n ⊒N=dist⁑Sβ†ΎYΓ—Y
9 xpsds.3 βŠ’Ο†β†’M∈∞Met⁑X
10 xpsds.4 βŠ’Ο†β†’N∈∞Met⁑Y
11 eqid ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy=x∈X,y∈YβŸΌβˆ…x1π‘œy
12 eqid ⊒Scalar⁑R=Scalar⁑R
13 eqid ⊒Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS=Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
14 1 2 3 4 5 11 12 13 xpsval βŠ’Ο†β†’T=x∈X,y∈YβŸΌβˆ…x1π‘œy-1β€œπ‘ Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
15 1 2 3 4 5 11 12 13 xpsrnbas βŠ’Ο†β†’ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy=BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
16 11 xpsff1o2 ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
17 f1ocnv ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1:ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy⟢1-1 ontoXΓ—Y
18 16 17 mp1i βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1:ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy⟢1-1 ontoXΓ—Y
19 ovexd βŠ’Ο†β†’Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈V
20 eqid ⊒dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy=dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
21 1 2 3 4 5 6 7 8 9 10 xpsxmetlem βŠ’Ο†β†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
22 ssid ⊒ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβŠ†ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
23 xmetres2 ⊒dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∧ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβŠ†ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβ†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
24 21 22 23 sylancl βŠ’Ο†β†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
25 14 15 18 19 20 6 24 imasf1oxmet βŠ’Ο†β†’P∈∞Met⁑XΓ—Y