Metamath Proof Explorer


Theorem imasf1oxmet

Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses imasf1oxmet.u φU=F𝑠R
imasf1oxmet.v φV=BaseR
imasf1oxmet.f φF:V1-1 ontoB
imasf1oxmet.r φRZ
imasf1oxmet.e E=distRV×V
imasf1oxmet.d D=distU
imasf1oxmet.m φE∞MetV
Assertion imasf1oxmet φD∞MetB

Proof

Step Hyp Ref Expression
1 imasf1oxmet.u φU=F𝑠R
2 imasf1oxmet.v φV=BaseR
3 imasf1oxmet.f φF:V1-1 ontoB
4 imasf1oxmet.r φRZ
5 imasf1oxmet.e E=distRV×V
6 imasf1oxmet.d D=distU
7 imasf1oxmet.m φE∞MetV
8 f1ofo F:V1-1 ontoBF:VontoB
9 3 8 syl φF:VontoB
10 eqid distR=distR
11 1 2 9 4 10 6 imasdsfn φDFnB×B
12 1 adantr φaVbVU=F𝑠R
13 2 adantr φaVbVV=BaseR
14 3 adantr φaVbVF:V1-1 ontoB
15 4 adantr φaVbVRZ
16 7 adantr φaVbVE∞MetV
17 simprl φaVbVaV
18 simprr φaVbVbV
19 12 13 14 15 5 6 16 17 18 imasdsf1o φaVbVFaDFb=aEb
20 xmetcl E∞MetVaVbVaEb*
21 20 3expb E∞MetVaVbVaEb*
22 7 21 sylan φaVbVaEb*
23 19 22 eqeltrd φaVbVFaDFb*
24 23 ralrimivva φaVbVFaDFb*
25 f1ofn F:V1-1 ontoBFFnV
26 3 25 syl φFFnV
27 oveq2 y=FbFaDy=FaDFb
28 27 eleq1d y=FbFaDy*FaDFb*
29 28 ralrn FFnVyranFFaDy*bVFaDFb*
30 26 29 syl φyranFFaDy*bVFaDFb*
31 forn F:VontoBranF=B
32 9 31 syl φranF=B
33 32 raleqdv φyranFFaDy*yBFaDy*
34 30 33 bitr3d φbVFaDFb*yBFaDy*
35 34 ralbidv φaVbVFaDFb*aVyBFaDy*
36 24 35 mpbid φaVyBFaDy*
37 oveq1 x=FaxDy=FaDy
38 37 eleq1d x=FaxDy*FaDy*
39 38 ralbidv x=FayBxDy*yBFaDy*
40 39 ralrn FFnVxranFyBxDy*aVyBFaDy*
41 26 40 syl φxranFyBxDy*aVyBFaDy*
42 32 raleqdv φxranFyBxDy*xByBxDy*
43 41 42 bitr3d φaVyBFaDy*xByBxDy*
44 36 43 mpbid φxByBxDy*
45 ffnov D:B×B*DFnB×BxByBxDy*
46 11 44 45 sylanbrc φD:B×B*
47 xmeteq0 E∞MetVaVbVaEb=0a=b
48 16 17 18 47 syl3anc φaVbVaEb=0a=b
49 19 eqeq1d φaVbVFaDFb=0aEb=0
50 f1of1 F:V1-1 ontoBF:V1-1B
51 3 50 syl φF:V1-1B
52 f1fveq F:V1-1BaVbVFa=Fba=b
53 51 52 sylan φaVbVFa=Fba=b
54 48 49 53 3bitr4d φaVbVFaDFb=0Fa=Fb
55 16 adantr φaVbVcVE∞MetV
56 simpr φaVbVcVcV
57 17 adantr φaVbVcVaV
58 18 adantr φaVbVcVbV
59 xmettri2 E∞MetVcVaVbVaEbcEa+𝑒cEb
60 55 56 57 58 59 syl13anc φaVbVcVaEbcEa+𝑒cEb
61 19 adantr φaVbVcVFaDFb=aEb
62 12 adantr φaVbVcVU=F𝑠R
63 13 adantr φaVbVcVV=BaseR
64 14 adantr φaVbVcVF:V1-1 ontoB
65 15 adantr φaVbVcVRZ
66 62 63 64 65 5 6 55 56 57 imasdsf1o φaVbVcVFcDFa=cEa
67 62 63 64 65 5 6 55 56 58 imasdsf1o φaVbVcVFcDFb=cEb
68 66 67 oveq12d φaVbVcVFcDFa+𝑒FcDFb=cEa+𝑒cEb
69 60 61 68 3brtr4d φaVbVcVFaDFbFcDFa+𝑒FcDFb
70 69 ralrimiva φaVbVcVFaDFbFcDFa+𝑒FcDFb
71 oveq1 z=FczDFa=FcDFa
72 oveq1 z=FczDFb=FcDFb
73 71 72 oveq12d z=FczDFa+𝑒zDFb=FcDFa+𝑒FcDFb
74 73 breq2d z=FcFaDFbzDFa+𝑒zDFbFaDFbFcDFa+𝑒FcDFb
75 74 ralrn FFnVzranFFaDFbzDFa+𝑒zDFbcVFaDFbFcDFa+𝑒FcDFb
76 26 75 syl φzranFFaDFbzDFa+𝑒zDFbcVFaDFbFcDFa+𝑒FcDFb
77 32 raleqdv φzranFFaDFbzDFa+𝑒zDFbzBFaDFbzDFa+𝑒zDFb
78 76 77 bitr3d φcVFaDFbFcDFa+𝑒FcDFbzBFaDFbzDFa+𝑒zDFb
79 78 adantr φaVbVcVFaDFbFcDFa+𝑒FcDFbzBFaDFbzDFa+𝑒zDFb
80 70 79 mpbid φaVbVzBFaDFbzDFa+𝑒zDFb
81 54 80 jca φaVbVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFb
82 81 ralrimivva φaVbVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFb
83 27 eqeq1d y=FbFaDy=0FaDFb=0
84 eqeq2 y=FbFa=yFa=Fb
85 83 84 bibi12d y=FbFaDy=0Fa=yFaDFb=0Fa=Fb
86 oveq2 y=FbzDy=zDFb
87 86 oveq2d y=FbzDFa+𝑒zDy=zDFa+𝑒zDFb
88 27 87 breq12d y=FbFaDyzDFa+𝑒zDyFaDFbzDFa+𝑒zDFb
89 88 ralbidv y=FbzBFaDyzDFa+𝑒zDyzBFaDFbzDFa+𝑒zDFb
90 85 89 anbi12d y=FbFaDy=0Fa=yzBFaDyzDFa+𝑒zDyFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFb
91 90 ralrn FFnVyranFFaDy=0Fa=yzBFaDyzDFa+𝑒zDybVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFb
92 26 91 syl φyranFFaDy=0Fa=yzBFaDyzDFa+𝑒zDybVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFb
93 32 raleqdv φyranFFaDy=0Fa=yzBFaDyzDFa+𝑒zDyyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
94 92 93 bitr3d φbVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFbyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
95 94 ralbidv φaVbVFaDFb=0Fa=FbzBFaDFbzDFa+𝑒zDFbaVyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
96 82 95 mpbid φaVyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
97 37 eqeq1d x=FaxDy=0FaDy=0
98 eqeq1 x=Fax=yFa=y
99 97 98 bibi12d x=FaxDy=0x=yFaDy=0Fa=y
100 oveq2 x=FazDx=zDFa
101 100 oveq1d x=FazDx+𝑒zDy=zDFa+𝑒zDy
102 37 101 breq12d x=FaxDyzDx+𝑒zDyFaDyzDFa+𝑒zDy
103 102 ralbidv x=FazBxDyzDx+𝑒zDyzBFaDyzDFa+𝑒zDy
104 99 103 anbi12d x=FaxDy=0x=yzBxDyzDx+𝑒zDyFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
105 104 ralbidv x=FayBxDy=0x=yzBxDyzDx+𝑒zDyyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
106 105 ralrn FFnVxranFyBxDy=0x=yzBxDyzDx+𝑒zDyaVyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
107 26 106 syl φxranFyBxDy=0x=yzBxDyzDx+𝑒zDyaVyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDy
108 32 raleqdv φxranFyBxDy=0x=yzBxDyzDx+𝑒zDyxByBxDy=0x=yzBxDyzDx+𝑒zDy
109 107 108 bitr3d φaVyBFaDy=0Fa=yzBFaDyzDFa+𝑒zDyxByBxDy=0x=yzBxDyzDx+𝑒zDy
110 96 109 mpbid φxByBxDy=0x=yzBxDyzDx+𝑒zDy
111 7 elfvexd φVV
112 focdmex VVF:VontoBBV
113 111 9 112 sylc φBV
114 isxmet BVD∞MetBD:B×B*xByBxDy=0x=yzBxDyzDx+𝑒zDy
115 113 114 syl φD∞MetBD:B×B*xByBxDy=0x=yzBxDyzDx+𝑒zDy
116 46 110 115 mpbir2and φD∞MetB