Metamath Proof Explorer
Description: The distance function is transferred across an image structure under a
bijection. (Contributed by Mario Carneiro, 20-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
imasdsf1o.u |
|
|
|
imasdsf1o.v |
|
|
|
imasdsf1o.f |
|
|
|
imasdsf1o.r |
|
|
|
imasdsf1o.e |
|
|
|
imasdsf1o.d |
|
|
|
imasdsf1o.m |
|
|
|
imasdsf1o.x |
|
|
|
imasdsf1o.y |
|
|
Assertion |
imasdsf1o |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
imasdsf1o.u |
|
2 |
|
imasdsf1o.v |
|
3 |
|
imasdsf1o.f |
|
4 |
|
imasdsf1o.r |
|
5 |
|
imasdsf1o.e |
|
6 |
|
imasdsf1o.d |
|
7 |
|
imasdsf1o.m |
|
8 |
|
imasdsf1o.x |
|
9 |
|
imasdsf1o.y |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
imasdsf1olem |
|