Metamath Proof Explorer


Theorem imasdsf1o

Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses imasdsf1o.u φU=F𝑠R
imasdsf1o.v φV=BaseR
imasdsf1o.f φF:V1-1 ontoB
imasdsf1o.r φRZ
imasdsf1o.e E=distRV×V
imasdsf1o.d D=distU
imasdsf1o.m φE∞MetV
imasdsf1o.x φXV
imasdsf1o.y φYV
Assertion imasdsf1o φFXDFY=XEY

Proof

Step Hyp Ref Expression
1 imasdsf1o.u φU=F𝑠R
2 imasdsf1o.v φV=BaseR
3 imasdsf1o.f φF:V1-1 ontoB
4 imasdsf1o.r φRZ
5 imasdsf1o.e E=distRV×V
6 imasdsf1o.d D=distU
7 imasdsf1o.m φE∞MetV
8 imasdsf1o.x φXV
9 imasdsf1o.y φYV
10 eqid 𝑠*𝑠*−∞=𝑠*𝑠*−∞
11 eqid hV×V1n|F1sth1=FXF2ndhn=FYi1n1F2ndhi=F1sthi+1=hV×V1n|F1sth1=FXF2ndhn=FYi1n1F2ndhi=F1sthi+1
12 eqid nranghV×V1n|F1sth1=FXF2ndhn=FYi1n1F2ndhi=F1sthi+1𝑠*Eg=nranghV×V1n|F1sth1=FXF2ndhn=FYi1n1F2ndhi=F1sthi+1𝑠*Eg
13 1 2 3 4 5 6 7 8 9 10 11 12 imasdsf1olem φFXDFY=XEY