| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasf1oxmet.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasf1oxmet.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasf1oxmet.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 4 |
|
imasf1oxmet.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 5 |
|
imasf1oxmet.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 6 |
|
imasf1oxmet.d |
⊢ 𝐷 = ( dist ‘ 𝑈 ) |
| 7 |
|
imasf1oxmet.m |
⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 8 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
| 11 |
1 2 9 4 10 6
|
imasdsfn |
⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑅 ∈ 𝑍 ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) |
| 18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) |
| 19 |
12 13 14 15 5 6 16 17 18
|
imasdsf1o |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 20 |
|
xmetcl |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) |
| 21 |
20
|
3expb |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) |
| 22 |
7 21
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 25 |
|
f1ofn |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 Fn 𝑉 ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 27 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 29 |
28
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 30 |
26 29
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 31 |
|
forn |
⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 32 |
9 31
|
syl |
⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 33 |
32
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 34 |
30 33
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 35 |
34
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 36 |
24 35
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) |
| 37 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 39 |
38
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 40 |
39
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 41 |
26 40
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 42 |
32
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 43 |
41 42
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 44 |
36 43
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 45 |
|
ffnov |
⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 46 |
11 44 45
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 47 |
|
xmeteq0 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑎 𝐸 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 48 |
16 17 18 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 𝐸 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 49 |
19
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝑎 𝐸 𝑏 ) = 0 ) ) |
| 50 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 51 |
3 50
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 52 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 53 |
51 52
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 54 |
48 49 53
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 55 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
| 57 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 58 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 59 |
|
xmettri2 |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ≤ ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) |
| 60 |
55 56 57 58 59
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 𝐸 𝑏 ) ≤ ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) |
| 61 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 62 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 63 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 64 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 65 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑅 ∈ 𝑍 ) |
| 66 |
62 63 64 65 5 6 55 56 57
|
imasdsf1o |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) = ( 𝑐 𝐸 𝑎 ) ) |
| 67 |
62 63 64 65 5 6 55 56 58
|
imasdsf1o |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑐 𝐸 𝑏 ) ) |
| 68 |
66 67
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) = ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) |
| 69 |
60 61 68
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 |
69
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) |
| 72 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 73 |
71 72
|
oveq12d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) = ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 74 |
73
|
breq2d |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 75 |
74
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 76 |
26 75
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 77 |
32
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 78 |
76 77
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 80 |
70 79
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 81 |
54 80
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 82 |
81
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 83 |
27
|
eqeq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ) ) |
| 84 |
|
eqeq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 85 |
83 84
|
bibi12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 86 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 88 |
27 87
|
breq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 89 |
88
|
ralbidv |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 90 |
85 89
|
anbi12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 91 |
90
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 92 |
26 91
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 93 |
32
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 94 |
92 93
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 95 |
94
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 96 |
82 95
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 97 |
37
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ) ) |
| 98 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 = 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ) |
| 99 |
97 98
|
bibi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 102 |
37 101
|
breq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 103 |
102
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 104 |
99 103
|
anbi12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 105 |
104
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 106 |
105
|
ralrn |
⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 107 |
26 106
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 108 |
32
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 109 |
107 108
|
bitr3d |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 110 |
96 109
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 111 |
7
|
elfvexd |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 112 |
|
focdmex |
⊢ ( 𝑉 ∈ V → ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐵 ∈ V ) ) |
| 113 |
111 9 112
|
sylc |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 114 |
|
isxmet |
⊢ ( 𝐵 ∈ V → ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ↔ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 115 |
113 114
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ↔ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 116 |
46 110 115
|
mpbir2and |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |