Metamath Proof Explorer


Theorem imasf1omet

Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses imasf1oxmet.u φU=F𝑠R
imasf1oxmet.v φV=BaseR
imasf1oxmet.f φF:V1-1 ontoB
imasf1oxmet.r φRZ
imasf1oxmet.e E=distRV×V
imasf1oxmet.d D=distU
imasf1omet.m φEMetV
Assertion imasf1omet φDMetB

Proof

Step Hyp Ref Expression
1 imasf1oxmet.u φU=F𝑠R
2 imasf1oxmet.v φV=BaseR
3 imasf1oxmet.f φF:V1-1 ontoB
4 imasf1oxmet.r φRZ
5 imasf1oxmet.e E=distRV×V
6 imasf1oxmet.d D=distU
7 imasf1omet.m φEMetV
8 metxmet EMetVE∞MetV
9 7 8 syl φE∞MetV
10 1 2 3 4 5 6 9 imasf1oxmet φD∞MetB
11 f1ofo F:V1-1 ontoBF:VontoB
12 3 11 syl φF:VontoB
13 eqid distR=distR
14 1 2 12 4 13 6 imasdsfn φDFnB×B
15 1 adantr φaVbVU=F𝑠R
16 2 adantr φaVbVV=BaseR
17 3 adantr φaVbVF:V1-1 ontoB
18 4 adantr φaVbVRZ
19 9 adantr φaVbVE∞MetV
20 simprl φaVbVaV
21 simprr φaVbVbV
22 15 16 17 18 5 6 19 20 21 imasdsf1o φaVbVFaDFb=aEb
23 metcl EMetVaVbVaEb
24 23 3expb EMetVaVbVaEb
25 7 24 sylan φaVbVaEb
26 22 25 eqeltrd φaVbVFaDFb
27 26 ralrimivva φaVbVFaDFb
28 f1ofn F:V1-1 ontoBFFnV
29 3 28 syl φFFnV
30 oveq2 y=FbFaDy=FaDFb
31 30 eleq1d y=FbFaDyFaDFb
32 31 ralrn FFnVyranFFaDybVFaDFb
33 29 32 syl φyranFFaDybVFaDFb
34 forn F:VontoBranF=B
35 12 34 syl φranF=B
36 35 raleqdv φyranFFaDyyBFaDy
37 33 36 bitr3d φbVFaDFbyBFaDy
38 37 ralbidv φaVbVFaDFbaVyBFaDy
39 27 38 mpbid φaVyBFaDy
40 oveq1 x=FaxDy=FaDy
41 40 eleq1d x=FaxDyFaDy
42 41 ralbidv x=FayBxDyyBFaDy
43 42 ralrn FFnVxranFyBxDyaVyBFaDy
44 29 43 syl φxranFyBxDyaVyBFaDy
45 35 raleqdv φxranFyBxDyxByBxDy
46 44 45 bitr3d φaVyBFaDyxByBxDy
47 39 46 mpbid φxByBxDy
48 ffnov D:B×BDFnB×BxByBxDy
49 14 47 48 sylanbrc φD:B×B
50 ismet2 DMetBD∞MetBD:B×B
51 10 49 50 sylanbrc φDMetB