Metamath Proof Explorer


Theorem xpsxms

Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis xpsms.t T = R × 𝑠 S
Assertion xpsxms R ∞MetSp S ∞MetSp T ∞MetSp

Proof

Step Hyp Ref Expression
1 xpsms.t T = R × 𝑠 S
2 eqid Base R = Base R
3 eqid Base S = Base S
4 simpl R ∞MetSp S ∞MetSp R ∞MetSp
5 simpr R ∞MetSp S ∞MetSp S ∞MetSp
6 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
7 eqid Scalar R = Scalar R
8 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
9 1 2 3 4 5 6 7 8 xpsval R ∞MetSp S ∞MetSp T = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
10 1 2 3 4 5 6 7 8 xpsrnbas R ∞MetSp S ∞MetSp ran x Base R , y Base S x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
11 6 xpsff1o2 x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
12 f1ocnv x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S
13 11 12 mp1i R ∞MetSp S ∞MetSp x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S
14 fvexd R ∞MetSp S ∞MetSp Scalar R V
15 2onn 2 𝑜 ω
16 nnfi 2 𝑜 ω 2 𝑜 Fin
17 15 16 mp1i R ∞MetSp S ∞MetSp 2 𝑜 Fin
18 xpscf R 1 𝑜 S : 2 𝑜 ∞MetSp R ∞MetSp S ∞MetSp
19 18 biimpri R ∞MetSp S ∞MetSp R 1 𝑜 S : 2 𝑜 ∞MetSp
20 8 prdsxms Scalar R V 2 𝑜 Fin R 1 𝑜 S : 2 𝑜 ∞MetSp Scalar R 𝑠 R 1 𝑜 S ∞MetSp
21 14 17 19 20 syl3anc R ∞MetSp S ∞MetSp Scalar R 𝑠 R 1 𝑜 S ∞MetSp
22 9 10 13 21 imasf1oxms R ∞MetSp S ∞MetSp T ∞MetSp