Metamath Proof Explorer


Theorem xrmax1

Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmax1 A*B*AifABBA

Proof

Step Hyp Ref Expression
1 xrleid A*AA
2 iffalse ¬ABifABBA=A
3 2 breq2d ¬ABAifABBAAA
4 1 3 syl5ibrcom A*¬ABAifABBA
5 id ABAB
6 iftrue ABifABBA=B
7 5 6 breqtrrd ABAifABBA
8 4 7 pm2.61d2 A*AifABBA
9 8 adantr A*B*AifABBA