Metamath Proof Explorer


Theorem xrmax2

Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmax2 A*B*BifABBA

Proof

Step Hyp Ref Expression
1 xrleid B*BB
2 1 ad2antlr A*B*ABBB
3 iftrue ABifABBA=B
4 3 adantl A*B*ABifABBA=B
5 2 4 breqtrrd A*B*ABBifABBA
6 xrletri A*B*ABBA
7 6 orcanai A*B*¬ABBA
8 iffalse ¬ABifABBA=A
9 8 adantl A*B*¬ABifABBA=A
10 7 9 breqtrrd A*B*¬ABBifABBA
11 5 10 pm2.61dan A*B*BifABBA