Metamath Proof Explorer


Theorem xrmin2

Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmin2 A*B*ifABABB

Proof

Step Hyp Ref Expression
1 xrleid B*BB
2 iffalse ¬ABifABAB=B
3 2 breq1d ¬ABifABABBBB
4 1 3 syl5ibrcom B*¬ABifABABB
5 iftrue ABifABAB=A
6 id ABAB
7 5 6 eqbrtrd ABifABABB
8 4 7 pm2.61d2 B*ifABABB
9 8 adantl A*B*ifABABB