Metamath Proof Explorer


Theorem zdivadd

Description: Property of divisibility: if D divides A and B then it divides A + B . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdivadd DABADBDA+BD

Proof

Step Hyp Ref Expression
1 zcn AA
2 zcn BB
3 nncn DD
4 nnne0 DD0
5 3 4 jca DDD0
6 divdir ABDD0A+BD=AD+BD
7 1 2 5 6 syl3an ABDA+BD=AD+BD
8 7 3comr DABA+BD=AD+BD
9 8 adantr DABADBDA+BD=AD+BD
10 zaddcl ADBDAD+BD
11 10 adantl DABADBDAD+BD
12 9 11 eqeltrd DABADBDA+BD