Metamath Proof Explorer


Theorem zfallfaccl

Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion zfallfaccl AN0AN_

Proof

Step Hyp Ref Expression
1 zsscn
2 1z 1
3 zmulcl xyxy
4 nn0z k0k
5 zsubcl AkAk
6 4 5 sylan2 Ak0Ak
7 1 2 3 6 fallfaccllem AN0AN_