Metamath Proof Explorer


Theorem zlmodzxznm

Description: Example of a linearly dependent set whose elements are not linear combinations of the others, see note in Roman p. 112). (Contributed by AV, 23-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzequa.z Z = ring freeLMod 0 1
zlmodzxzequa.o 0 ˙ = 0 0 1 0
zlmodzxzequa.t ˙ = Z
zlmodzxzequa.m - ˙ = - Z
zlmodzxzequa.a A = 0 3 1 6
zlmodzxzequa.b B = 0 2 1 4
Assertion zlmodzxznm i i ˙ A B i ˙ B A

Proof

Step Hyp Ref Expression
1 zlmodzxzequa.z Z = ring freeLMod 0 1
2 zlmodzxzequa.o 0 ˙ = 0 0 1 0
3 zlmodzxzequa.t ˙ = Z
4 zlmodzxzequa.m - ˙ = - Z
5 zlmodzxzequa.a A = 0 3 1 6
6 zlmodzxzequa.b B = 0 2 1 4
7 3prm 3
8 2prm 2
9 ztprmneprm i 3 2 i 3 = 2 3 = 2
10 7 8 9 mp3an23 i i 3 = 2 3 = 2
11 2re 2
12 2lt3 2 < 3
13 11 12 ltneii 2 3
14 eqneqall 2 = 3 2 3 i 3 2
15 13 14 mpi 2 = 3 i 3 2
16 15 eqcoms 3 = 2 i 3 2
17 10 16 syl6com i 3 = 2 i i 3 2
18 ax-1 i 3 2 i i 3 2
19 17 18 pm2.61ine i i 3 2
20 19 olcd i 0 0 i 3 2
21 c0ex 0 V
22 ovex i 3 V
23 21 22 pm3.2i 0 V i 3 V
24 opthneg 0 V i 3 V 0 i 3 0 2 0 0 i 3 2
25 23 24 mp1i i 0 i 3 0 2 0 0 i 3 2
26 20 25 mpbird i 0 i 3 0 2
27 0ne1 0 1
28 27 a1i i 0 1
29 28 orcd i 0 1 i 3 4
30 opthneg 0 V i 3 V 0 i 3 1 4 0 1 i 3 4
31 23 30 mp1i i 0 i 3 1 4 0 1 i 3 4
32 29 31 mpbird i 0 i 3 1 4
33 26 32 jca i 0 i 3 0 2 0 i 3 1 4
34 33 orcd i 0 i 3 0 2 0 i 3 1 4 1 i 6 0 2 1 i 6 1 4
35 opex 0 i 3 V
36 opex 1 i 6 V
37 35 36 pm3.2i 0 i 3 V 1 i 6 V
38 37 a1i i 0 i 3 V 1 i 6 V
39 opex 0 2 V
40 opex 1 4 V
41 39 40 pm3.2i 0 2 V 1 4 V
42 41 a1i i 0 2 V 1 4 V
43 28 orcd i 0 1 i 3 i 6
44 opthneg 0 V i 3 V 0 i 3 1 i 6 0 1 i 3 i 6
45 23 44 mp1i i 0 i 3 1 i 6 0 1 i 3 i 6
46 43 45 mpbird i 0 i 3 1 i 6
47 prnebg 0 i 3 V 1 i 6 V 0 2 V 1 4 V 0 i 3 1 i 6 0 i 3 0 2 0 i 3 1 4 1 i 6 0 2 1 i 6 1 4 0 i 3 1 i 6 0 2 1 4
48 47 bicomd 0 i 3 V 1 i 6 V 0 2 V 1 4 V 0 i 3 1 i 6 0 i 3 1 i 6 0 2 1 4 0 i 3 0 2 0 i 3 1 4 1 i 6 0 2 1 i 6 1 4
49 38 42 46 48 syl3anc i 0 i 3 1 i 6 0 2 1 4 0 i 3 0 2 0 i 3 1 4 1 i 6 0 2 1 i 6 1 4
50 34 49 mpbird i 0 i 3 1 i 6 0 2 1 4
51 5 oveq2i i ˙ A = i ˙ 0 3 1 6
52 3z 3
53 6nn 6
54 53 nnzi 6
55 1 3 zlmodzxzscm i 3 6 i ˙ 0 3 1 6 = 0 i 3 1 i 6
56 52 54 55 mp3an23 i i ˙ 0 3 1 6 = 0 i 3 1 i 6
57 51 56 syl5eq i i ˙ A = 0 i 3 1 i 6
58 6 a1i i B = 0 2 1 4
59 50 57 58 3netr4d i i ˙ A B
60 ztprmneprm i 2 3 i 2 = 3 2 = 3
61 8 7 60 mp3an23 i i 2 = 3 2 = 3
62 eqneqall 2 = 3 2 3 i 2 3
63 13 62 mpi 2 = 3 i 2 3
64 61 63 syl6com i 2 = 3 i i 2 3
65 ax-1 i 2 3 i i 2 3
66 64 65 pm2.61ine i i 2 3
67 66 olcd i 0 0 i 2 3
68 ovex i 2 V
69 21 68 pm3.2i 0 V i 2 V
70 opthneg 0 V i 2 V 0 i 2 0 3 0 0 i 2 3
71 69 70 mp1i i 0 i 2 0 3 0 0 i 2 3
72 67 71 mpbird i 0 i 2 0 3
73 28 orcd i 0 1 i 2 6
74 opthneg 0 V i 2 V 0 i 2 1 6 0 1 i 2 6
75 69 74 mp1i i 0 i 2 1 6 0 1 i 2 6
76 73 75 mpbird i 0 i 2 1 6
77 72 76 jca i 0 i 2 0 3 0 i 2 1 6
78 77 orcd i 0 i 2 0 3 0 i 2 1 6 1 i 4 0 3 1 i 4 1 6
79 opex 0 i 2 V
80 opex 1 i 4 V
81 79 80 pm3.2i 0 i 2 V 1 i 4 V
82 81 a1i i 0 i 2 V 1 i 4 V
83 opex 0 3 V
84 opex 1 6 V
85 83 84 pm3.2i 0 3 V 1 6 V
86 85 a1i i 0 3 V 1 6 V
87 28 orcd i 0 1 i 2 i 4
88 opthneg 0 V i 2 V 0 i 2 1 i 4 0 1 i 2 i 4
89 69 88 mp1i i 0 i 2 1 i 4 0 1 i 2 i 4
90 87 89 mpbird i 0 i 2 1 i 4
91 prnebg 0 i 2 V 1 i 4 V 0 3 V 1 6 V 0 i 2 1 i 4 0 i 2 0 3 0 i 2 1 6 1 i 4 0 3 1 i 4 1 6 0 i 2 1 i 4 0 3 1 6
92 91 bicomd 0 i 2 V 1 i 4 V 0 3 V 1 6 V 0 i 2 1 i 4 0 i 2 1 i 4 0 3 1 6 0 i 2 0 3 0 i 2 1 6 1 i 4 0 3 1 i 4 1 6
93 82 86 90 92 syl3anc i 0 i 2 1 i 4 0 3 1 6 0 i 2 0 3 0 i 2 1 6 1 i 4 0 3 1 i 4 1 6
94 78 93 mpbird i 0 i 2 1 i 4 0 3 1 6
95 6 oveq2i i ˙ B = i ˙ 0 2 1 4
96 2z 2
97 4z 4
98 1 3 zlmodzxzscm i 2 4 i ˙ 0 2 1 4 = 0 i 2 1 i 4
99 96 97 98 mp3an23 i i ˙ 0 2 1 4 = 0 i 2 1 i 4
100 95 99 syl5eq i i ˙ B = 0 i 2 1 i 4
101 5 a1i i A = 0 3 1 6
102 94 100 101 3netr4d i i ˙ B A
103 59 102 jca i i ˙ A B i ˙ B A
104 103 rgen i i ˙ A B i ˙ B A