Metamath Proof Explorer


Theorem zlmtset

Description: Topology in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses zlmlem2.1 W = ℤMod G
zlmtset.1 J = TopSet G
Assertion zlmtset G V J = TopSet W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W = ℤMod G
2 zlmtset.1 J = TopSet G
3 tsetid TopSet = Slot TopSet ndx
4 slotstnscsi TopSet ndx Scalar ndx TopSet ndx ndx TopSet ndx 𝑖 ndx
5 4 simp1i TopSet ndx Scalar ndx
6 3 5 setsnid TopSet G = TopSet G sSet Scalar ndx ring
7 4 simp2i TopSet ndx ndx
8 3 7 setsnid TopSet G sSet Scalar ndx ring = TopSet G sSet Scalar ndx ring sSet ndx G
9 2 6 8 3eqtri J = TopSet G sSet Scalar ndx ring sSet ndx G
10 eqid G = G
11 1 10 zlmval G V W = G sSet Scalar ndx ring sSet ndx G
12 11 fveq2d G V TopSet W = TopSet G sSet Scalar ndx ring sSet ndx G
13 9 12 eqtr4id G V J = TopSet W