Metamath Proof Explorer


Theorem zlmtset

Description: Topology in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 W = ℤMod G
zlmtset.1 J = TopSet G
Assertion zlmtset G V J = TopSet W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W = ℤMod G
2 zlmtset.1 J = TopSet G
3 tsetid TopSet = Slot TopSet ndx
4 5re 5
5 5lt9 5 < 9
6 4 5 gtneii 9 5
7 tsetndx TopSet ndx = 9
8 scandx Scalar ndx = 5
9 7 8 neeq12i TopSet ndx Scalar ndx 9 5
10 6 9 mpbir TopSet ndx Scalar ndx
11 3 10 setsnid TopSet G = TopSet G sSet Scalar ndx ring
12 6re 6
13 6lt9 6 < 9
14 12 13 gtneii 9 6
15 vscandx ndx = 6
16 7 15 neeq12i TopSet ndx ndx 9 6
17 14 16 mpbir TopSet ndx ndx
18 3 17 setsnid TopSet G sSet Scalar ndx ring = TopSet G sSet Scalar ndx ring sSet ndx G
19 2 11 18 3eqtri J = TopSet G sSet Scalar ndx ring sSet ndx G
20 eqid G = G
21 1 20 zlmval G V W = G sSet Scalar ndx ring sSet ndx G
22 21 fveq2d G V TopSet W = TopSet G sSet Scalar ndx ring sSet ndx G
23 19 22 eqtr4id G V J = TopSet W