Metamath Proof Explorer


Theorem zmodidfzoimp

Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodidfzoimp M0..^NMmodN=M

Proof

Step Hyp Ref Expression
1 elfzo0 M0..^NM0NM<N
2 nn0z M0M
3 2 anim1i M0NMN
4 3 3adant3 M0NM<NMN
5 1 4 sylbi M0..^NMN
6 zmodidfzo MNMmodN=MM0..^N
7 6 biimprd MNM0..^NMmodN=M
8 5 7 mpcom M0..^NMmodN=M