Metamath Proof Explorer


Theorem znbaslem

Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses znval2.s S=RSpanring
znval2.u U=ring/𝑠ring~QGSN
znval2.y Y=/N
znbaslem.e E=SlotEndx
znbaslem.n Endxndx
Assertion znbaslem N0EU=EY

Proof

Step Hyp Ref Expression
1 znval2.s S=RSpanring
2 znval2.u U=ring/𝑠ring~QGSN
3 znval2.y Y=/N
4 znbaslem.e E=SlotEndx
5 znbaslem.n Endxndx
6 4 5 setsnid EU=EUsSetndxY
7 eqid Y=Y
8 1 2 3 7 znval2 N0Y=UsSetndxY
9 8 fveq2d N0EY=EUsSetndxY
10 6 9 eqtr4id N0EU=EY