Metamath Proof Explorer


Theorem znnn0nn

Description: The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion znnn0nn N¬N0N

Proof

Step Hyp Ref Expression
1 simpl N¬N0N
2 1 znegcld N¬N0N
3 elznn NNN- N0
4 2 3 sylib N¬N0NN- N0
5 4 simprd N¬N0N- N0
6 zcn NN
7 6 adantr N¬N0N
8 7 negnegd N¬N0- N=N
9 simpr N¬N0¬N0
10 8 9 eqneltrd N¬N0¬- N0
11 pm2.24 - N0¬- N0N
12 11 jao1i N- N0¬- N0N
13 5 10 12 sylc N¬N0N