Metamath Proof Explorer


Theorem zrhf1ker

Description: The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses zrhker.0 B = Base R
zrhker.1 L = ℤRHom R
zrhker.2 0 ˙ = 0 R
Assertion zrhf1ker R Ring L : 1-1 B L -1 0 ˙ = 0

Proof

Step Hyp Ref Expression
1 zrhker.0 B = Base R
2 zrhker.1 L = ℤRHom R
3 zrhker.2 0 ˙ = 0 R
4 2 zrhrhm R Ring L ring RingHom R
5 rhmghm L ring RingHom R L ring GrpHom R
6 zringbas = Base ring
7 zring0 0 = 0 ring
8 6 1 7 3 kerf1ghm L ring GrpHom R L : 1-1 B L -1 0 ˙ = 0
9 4 5 8 3syl R Ring L : 1-1 B L -1 0 ˙ = 0