Metamath Proof Explorer


Theorem zrhf1ker

Description: The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses zrhker.0 B=BaseR
zrhker.1 L=ℤRHomR
zrhker.2 0˙=0R
Assertion zrhf1ker RRingL:1-1BL-10˙=0

Proof

Step Hyp Ref Expression
1 zrhker.0 B=BaseR
2 zrhker.1 L=ℤRHomR
3 zrhker.2 0˙=0R
4 2 zrhrhm RRingLringRingHomR
5 rhmghm LringRingHomRLringGrpHomR
6 zringbas =Basering
7 zring0 0=0ring
8 6 1 7 3 kerf1ghm LringGrpHomRL:1-1BL-10˙=0
9 4 5 8 3syl RRingL:1-1BL-10˙=0