Metamath Proof Explorer


Theorem zringsub

Description: The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypothesis zringsub.p -˙=-ring
Assertion zringsub XYX-˙Y=XY

Proof

Step Hyp Ref Expression
1 zringsub.p -˙=-ring
2 zcn xx
3 zaddcl xyx+y
4 znegcl xx
5 0z 0
6 2 3 4 5 cnsubglem SubGrpfld
7 cnfldsub =-fld
8 df-zring ring=fld𝑠
9 7 8 1 subgsub SubGrpfldXYXY=X-˙Y
10 6 9 mp3an1 XYXY=X-˙Y
11 10 eqcomd XYX-˙Y=XY