| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 | ⊢ 𝑆  =  { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 } | 
						
							| 2 |  | 01sqrexlem1.2 | ⊢ 𝐵  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 }  ⊆  ℝ+ | 
						
							| 4 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 5 | 3 4 | sstri | ⊢ { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 }  ⊆  ℝ | 
						
							| 6 | 1 5 | eqsstri | ⊢ 𝑆  ⊆  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝑆  ⊆  ℝ ) | 
						
							| 8 | 1 2 | 01sqrexlem2 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  𝑆 ) | 
						
							| 9 | 8 | ne0d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝑆  ≠  ∅ ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 | 1 2 | 01sqrexlem1 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∀ 𝑦  ∈  𝑆 𝑦  ≤  1 ) | 
						
							| 12 |  | brralrspcev | ⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑦  ∈  𝑆 𝑦  ≤  1 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧 ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧 ) | 
						
							| 14 | 7 9 13 | 3jca | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑦  ∈  𝑆 𝑦  ≤  𝑧 ) ) |