| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 | ⊢ 𝑆  =  { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 } | 
						
							| 2 |  | 01sqrexlem1.2 | ⊢ 𝐵  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 3 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑦 ) ) | 
						
							| 4 |  | suprcl | ⊢ ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑦 )  →  sup ( 𝑆 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  sup ( 𝑆 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐵  ∈  ℝ ) | 
						
							| 7 |  | rpgt0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  <  𝐴 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  0  <  𝐴 ) | 
						
							| 9 | 1 2 | 01sqrexlem2 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  𝑆 ) | 
						
							| 10 |  | suprub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑦 )  ∧  𝐴  ∈  𝑆 )  →  𝐴  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 11 | 3 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ≤  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 12 | 11 2 | breqtrrdi | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ≤  𝐵 ) | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 15 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <  𝐴  ∧  𝐴  ≤  𝐵 )  →  0  <  𝐵 ) ) | 
						
							| 16 | 13 14 6 15 | mp3an2ani | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 0  <  𝐴  ∧  𝐴  ≤  𝐵 )  →  0  <  𝐵 ) ) | 
						
							| 17 | 8 12 16 | mp2and | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  0  <  𝐵 ) | 
						
							| 18 | 6 17 | elrpd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 19 | 1 2 | 01sqrexlem1 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∀ 𝑧  ∈  𝑆 𝑧  ≤  1 ) | 
						
							| 20 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 21 |  | suprleub | ⊢ ( ( ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑦 )  ∧  1  ∈  ℝ )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  1  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  1 ) ) | 
						
							| 22 | 3 20 21 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ≤  1  ↔  ∀ 𝑧  ∈  𝑆 𝑧  ≤  1 ) ) | 
						
							| 23 | 19 22 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  sup ( 𝑆 ,  ℝ ,   <  )  ≤  1 ) | 
						
							| 24 | 2 23 | eqbrtrid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐵  ≤  1 ) | 
						
							| 25 | 18 24 | jca | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵  ∈  ℝ+  ∧  𝐵  ≤  1 ) ) |