| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 | ⊢ 𝑆  =  { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 } | 
						
							| 2 |  | 01sqrexlem1.2 | ⊢ 𝐵  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 3 |  | 01sqrexlem5.3 | ⊢ 𝑇  =  { 𝑦  ∣  ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑦  =  ( 𝑎  ·  𝑏 ) } | 
						
							| 4 | 1 | ssrab3 | ⊢ 𝑆  ⊆  ℝ+ | 
						
							| 5 | 4 | sseli | ⊢ ( 𝑣  ∈  𝑆  →  𝑣  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpge0d | ⊢ ( 𝑣  ∈  𝑆  →  0  ≤  𝑣 ) | 
						
							| 7 | 6 | rgen | ⊢ ∀ 𝑣  ∈  𝑆 0  ≤  𝑣 | 
						
							| 8 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 ) ) | 
						
							| 9 |  | pm4.24 | ⊢ ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ↔  ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ∧  ∀ 𝑣  ∈  𝑆 0  ≤  𝑣 ) ) | 
						
							| 10 | 9 | 3anbi1i | ⊢ ( ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 )  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 ) )  ↔  ( ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ∧  ∀ 𝑣  ∈  𝑆 0  ≤  𝑣 )  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 )  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 ) ) ) | 
						
							| 11 | 3 10 | supmullem2 | ⊢ ( ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 )  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 ) )  →  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 ) ) | 
						
							| 12 | 7 8 8 11 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 ) ) | 
						
							| 13 | 1 2 | 01sqrexlem4 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵  ∈  ℝ+  ∧  𝐵  ≤  1 ) ) | 
						
							| 14 |  | rpre | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≤  1 )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐵  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐵  ∈  ℂ ) | 
						
							| 18 | 17 | sqvald | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵 ↑ 2 )  =  ( 𝐵  ·  𝐵 ) ) | 
						
							| 19 | 2 2 | oveq12i | ⊢ ( 𝐵  ·  𝐵 )  =  ( sup ( 𝑆 ,  ℝ ,   <  )  ·  sup ( 𝑆 ,  ℝ ,   <  ) ) | 
						
							| 20 | 3 10 | supmul | ⊢ ( ( ∀ 𝑣  ∈  𝑆 0  ≤  𝑣  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 )  ∧  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑧  ∈  𝑆 𝑧  ≤  𝑣 ) )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ·  sup ( 𝑆 ,  ℝ ,   <  ) )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 21 | 7 8 8 20 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( sup ( 𝑆 ,  ℝ ,   <  )  ·  sup ( 𝑆 ,  ℝ ,   <  ) )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 22 | 19 21 | eqtrid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵  ·  𝐵 )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 23 | 18 22 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵 ↑ 2 )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 24 | 12 23 | jca | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 )  ∧  ( 𝐵 ↑ 2 )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) ) |