| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 | ⊢ 𝑆  =  { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 } | 
						
							| 2 |  | 01sqrexlem1.2 | ⊢ 𝐵  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 3 |  | 01sqrexlem5.3 | ⊢ 𝑇  =  { 𝑦  ∣  ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑦  =  ( 𝑎  ·  𝑏 ) } | 
						
							| 4 | 1 2 3 | 01sqrexlem5 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 )  ∧  ( 𝐵 ↑ 2 )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵 ↑ 2 )  =  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 6 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑦  =  ( 𝑎  ·  𝑏 )  ↔  𝑣  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 8 | 7 | 2rexbidv | ⊢ ( 𝑦  =  𝑣  →  ( ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑦  =  ( 𝑎  ·  𝑏 )  ↔  ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑣  =  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 9 | 6 8 3 | elab2 | ⊢ ( 𝑣  ∈  𝑇  ↔  ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑣  =  ( 𝑎  ·  𝑏 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 11 | 10 | breq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥 ↑ 2 )  ≤  𝐴  ↔  ( 𝑎 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 12 | 11 1 | elrab2 | ⊢ ( 𝑎  ∈  𝑆  ↔  ( 𝑎  ∈  ℝ+  ∧  ( 𝑎 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 13 | 12 | simplbi | ⊢ ( 𝑎  ∈  𝑆  →  𝑎  ∈  ℝ+ ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑥  =  𝑏  →  ( ( 𝑥 ↑ 2 )  ≤  𝐴  ↔  ( 𝑏 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 16 | 15 1 | elrab2 | ⊢ ( 𝑏  ∈  𝑆  ↔  ( 𝑏  ∈  ℝ+  ∧  ( 𝑏 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 17 | 16 | simplbi | ⊢ ( 𝑏  ∈  𝑆  →  𝑏  ∈  ℝ+ ) | 
						
							| 18 |  | rpre | ⊢ ( 𝑎  ∈  ℝ+  →  𝑎  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  𝑎  ∈  ℝ ) | 
						
							| 20 |  | rpre | ⊢ ( 𝑏  ∈  ℝ+  →  𝑏  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  𝑏  ∈  ℝ ) | 
						
							| 22 |  | rpgt0 | ⊢ ( 𝑏  ∈  ℝ+  →  0  <  𝑏 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  0  <  𝑏 ) | 
						
							| 24 |  | lemul1 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  0  <  𝑏 ) )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏  ·  𝑏 ) ) ) | 
						
							| 25 | 19 21 21 23 24 | syl112anc | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏  ·  𝑏 ) ) ) | 
						
							| 26 | 13 17 25 | syl2an | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏  ·  𝑏 ) ) ) | 
						
							| 27 | 17 | rpcnd | ⊢ ( 𝑏  ∈  𝑆  →  𝑏  ∈  ℂ ) | 
						
							| 28 | 27 | sqvald | ⊢ ( 𝑏  ∈  𝑆  →  ( 𝑏 ↑ 2 )  =  ( 𝑏  ·  𝑏 ) ) | 
						
							| 29 | 28 | breq2d | ⊢ ( 𝑏  ∈  𝑆  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 )  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏  ·  𝑏 ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 )  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏  ·  𝑏 ) ) ) | 
						
							| 31 | 26 30 | bitr4d | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 33 | 16 | simprbi | ⊢ ( 𝑏  ∈  𝑆  →  ( 𝑏 ↑ 2 )  ≤  𝐴 ) | 
						
							| 34 | 33 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏 ↑ 2 )  ≤  𝐴 ) | 
						
							| 35 | 13 | rpred | ⊢ ( 𝑎  ∈  𝑆  →  𝑎  ∈  ℝ ) | 
						
							| 36 | 17 | rpred | ⊢ ( 𝑏  ∈  𝑆  →  𝑏  ∈  ℝ ) | 
						
							| 37 |  | remulcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎  ·  𝑏 )  ∈  ℝ ) | 
						
							| 38 | 35 36 37 | syl2an | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑎  ·  𝑏 )  ∈  ℝ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ·  𝑏 )  ∈  ℝ ) | 
						
							| 40 | 36 | resqcld | ⊢ ( 𝑏  ∈  𝑆  →  ( 𝑏 ↑ 2 )  ∈  ℝ ) | 
						
							| 41 | 40 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏 ↑ 2 )  ∈  ℝ ) | 
						
							| 42 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 44 |  | letr | ⊢ ( ( ( 𝑎  ·  𝑏 )  ∈  ℝ  ∧  ( 𝑏 ↑ 2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 )  ∧  ( 𝑏 ↑ 2 )  ≤  𝐴 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 45 | 39 41 43 44 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 )  ∧  ( 𝑏 ↑ 2 )  ≤  𝐴 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 46 | 34 45 | mpan2d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑏 ↑ 2 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 47 | 32 46 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ≤  𝑏  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 48 |  | rpgt0 | ⊢ ( 𝑎  ∈  ℝ+  →  0  <  𝑎 ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  0  <  𝑎 ) | 
						
							| 50 |  | lemul2 | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑎  ∈  ℝ  ∧  ( 𝑎  ∈  ℝ  ∧  0  <  𝑎 ) )  →  ( 𝑏  ≤  𝑎  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎  ·  𝑎 ) ) ) | 
						
							| 51 | 21 19 19 49 50 | syl112anc | ⊢ ( ( 𝑎  ∈  ℝ+  ∧  𝑏  ∈  ℝ+ )  →  ( 𝑏  ≤  𝑎  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎  ·  𝑎 ) ) ) | 
						
							| 52 | 13 17 51 | syl2an | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑏  ≤  𝑎  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎  ·  𝑎 ) ) ) | 
						
							| 53 | 13 | rpcnd | ⊢ ( 𝑎  ∈  𝑆  →  𝑎  ∈  ℂ ) | 
						
							| 54 | 53 | sqvald | ⊢ ( 𝑎  ∈  𝑆  →  ( 𝑎 ↑ 2 )  =  ( 𝑎  ·  𝑎 ) ) | 
						
							| 55 | 54 | breq2d | ⊢ ( 𝑎  ∈  𝑆  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 )  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎  ·  𝑎 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 )  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎  ·  𝑎 ) ) ) | 
						
							| 57 | 52 56 | bitr4d | ⊢ ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑏  ≤  𝑎  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏  ≤  𝑎  ↔  ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 59 | 12 | simprbi | ⊢ ( 𝑎  ∈  𝑆  →  ( 𝑎 ↑ 2 )  ≤  𝐴 ) | 
						
							| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎 ↑ 2 )  ≤  𝐴 ) | 
						
							| 61 | 35 | resqcld | ⊢ ( 𝑎  ∈  𝑆  →  ( 𝑎 ↑ 2 )  ∈  ℝ ) | 
						
							| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎 ↑ 2 )  ∈  ℝ ) | 
						
							| 63 |  | letr | ⊢ ( ( ( 𝑎  ·  𝑏 )  ∈  ℝ  ∧  ( 𝑎 ↑ 2 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 )  ∧  ( 𝑎 ↑ 2 )  ≤  𝐴 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 64 | 39 62 43 63 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 )  ∧  ( 𝑎 ↑ 2 )  ≤  𝐴 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 65 | 60 64 | mpan2d | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( ( 𝑎  ·  𝑏 )  ≤  ( 𝑎 ↑ 2 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 66 | 58 65 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏  ≤  𝑎  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 67 | 1 2 | 01sqrexlem3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑆  ⊆  ℝ  ∧  𝑆  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑣  ∈  𝑆 𝑣  ≤  𝑦 ) ) | 
						
							| 68 | 67 | simp1d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝑆  ⊆  ℝ ) | 
						
							| 69 | 68 | sseld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑎  ∈  𝑆  →  𝑎  ∈  ℝ ) ) | 
						
							| 70 | 68 | sseld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑏  ∈  𝑆  →  𝑏  ∈  ℝ ) ) | 
						
							| 71 | 69 70 | anim12d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) ) | 
						
							| 73 |  | letric | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎  ≤  𝑏  ∨  𝑏  ≤  𝑎 ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ≤  𝑏  ∨  𝑏  ≤  𝑎 ) ) | 
						
							| 75 | 47 66 74 | mpjaod | ⊢ ( ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  ∧  ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 77 |  | breq1 | ⊢ ( 𝑣  =  ( 𝑎  ·  𝑏 )  →  ( 𝑣  ≤  𝐴  ↔  ( 𝑎  ·  𝑏 )  ≤  𝐴 ) ) | 
						
							| 78 | 77 | biimprcd | ⊢ ( ( 𝑎  ·  𝑏 )  ≤  𝐴  →  ( 𝑣  =  ( 𝑎  ·  𝑏 )  →  𝑣  ≤  𝐴 ) ) | 
						
							| 79 | 76 78 | syl6 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ( 𝑎  ∈  𝑆  ∧  𝑏  ∈  𝑆 )  →  ( 𝑣  =  ( 𝑎  ·  𝑏 )  →  𝑣  ≤  𝐴 ) ) ) | 
						
							| 80 | 79 | rexlimdvv | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( ∃ 𝑎  ∈  𝑆 ∃ 𝑏  ∈  𝑆 𝑣  =  ( 𝑎  ·  𝑏 )  →  𝑣  ≤  𝐴 ) ) | 
						
							| 81 | 9 80 | biimtrid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑣  ∈  𝑇  →  𝑣  ≤  𝐴 ) ) | 
						
							| 82 | 81 | ralrimiv | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ∀ 𝑣  ∈  𝑇 𝑣  ≤  𝐴 ) | 
						
							| 83 | 4 | simpld | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 ) ) | 
						
							| 84 | 42 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  ℝ ) | 
						
							| 85 |  | suprleub | ⊢ ( ( ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑣  ∈  ℝ ∀ 𝑢  ∈  𝑇 𝑢  ≤  𝑣 )  ∧  𝐴  ∈  ℝ )  →  ( sup ( 𝑇 ,  ℝ ,   <  )  ≤  𝐴  ↔  ∀ 𝑣  ∈  𝑇 𝑣  ≤  𝐴 ) ) | 
						
							| 86 | 83 84 85 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( sup ( 𝑇 ,  ℝ ,   <  )  ≤  𝐴  ↔  ∀ 𝑣  ∈  𝑇 𝑣  ≤  𝐴 ) ) | 
						
							| 87 | 82 86 | mpbird | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  sup ( 𝑇 ,  ℝ ,   <  )  ≤  𝐴 ) | 
						
							| 88 | 5 87 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐵 ↑ 2 )  ≤  𝐴 ) |