| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 |  |-  S = { x e. RR+ | ( x ^ 2 ) <_ A } | 
						
							| 2 |  | 01sqrexlem1.2 |  |-  B = sup ( S , RR , < ) | 
						
							| 3 | 1 2 | 01sqrexlem3 |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) ) | 
						
							| 4 |  | suprcl |  |-  ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) -> sup ( S , RR , < ) e. RR ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) e. RR ) | 
						
							| 6 | 2 5 | eqeltrid |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR ) | 
						
							| 7 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> 0 < A ) | 
						
							| 9 | 1 2 | 01sqrexlem2 |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) | 
						
							| 10 |  | suprub |  |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ A e. S ) -> A <_ sup ( S , RR , < ) ) | 
						
							| 11 | 3 9 10 | syl2anc |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A <_ sup ( S , RR , < ) ) | 
						
							| 12 | 11 2 | breqtrrdi |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A <_ B ) | 
						
							| 13 |  | 0re |  |-  0 e. RR | 
						
							| 14 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 15 |  | ltletr |  |-  ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) | 
						
							| 16 | 13 14 6 15 | mp3an2ani |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( ( 0 < A /\ A <_ B ) -> 0 < B ) ) | 
						
							| 17 | 8 12 16 | mp2and |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> 0 < B ) | 
						
							| 18 | 6 17 | elrpd |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> B e. RR+ ) | 
						
							| 19 | 1 2 | 01sqrexlem1 |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A. z e. S z <_ 1 ) | 
						
							| 20 |  | 1re |  |-  1 e. RR | 
						
							| 21 |  | suprleub |  |-  ( ( ( S C_ RR /\ S =/= (/) /\ E. y e. RR A. z e. S z <_ y ) /\ 1 e. RR ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) ) | 
						
							| 22 | 3 20 21 | sylancl |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( sup ( S , RR , < ) <_ 1 <-> A. z e. S z <_ 1 ) ) | 
						
							| 23 | 19 22 | mpbird |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> sup ( S , RR , < ) <_ 1 ) | 
						
							| 24 | 2 23 | eqbrtrid |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> B <_ 1 ) | 
						
							| 25 | 18 24 | jca |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( B e. RR+ /\ B <_ 1 ) ) |