| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 |  |-  S = { x e. RR+ | ( x ^ 2 ) <_ A } | 
						
							| 2 |  | 01sqrexlem1.2 |  |-  B = sup ( S , RR , < ) | 
						
							| 3 |  | simpl |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. RR+ ) | 
						
							| 4 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 5 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 6 |  | 1re |  |-  1 e. RR | 
						
							| 7 |  | lemul1 |  |-  ( ( A e. RR /\ 1 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) | 
						
							| 8 | 6 7 | mp3an2 |  |-  ( ( A e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) | 
						
							| 9 | 4 4 5 8 | syl12anc |  |-  ( A e. RR+ -> ( A <_ 1 <-> ( A x. A ) <_ ( 1 x. A ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( A x. A ) <_ ( 1 x. A ) ) | 
						
							| 11 |  | rpcn |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. CC ) | 
						
							| 13 |  | sqval |  |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( A e. CC -> ( A x. A ) = ( A ^ 2 ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( A x. A ) = ( A ^ 2 ) ) | 
						
							| 16 | 11 | mullidd |  |-  ( A e. RR+ -> ( 1 x. A ) = A ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( 1 x. A ) = A ) | 
						
							| 18 | 10 15 17 | 3brtr3d |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( A ^ 2 ) <_ A ) | 
						
							| 19 |  | oveq1 |  |-  ( x = A -> ( x ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 20 | 19 | breq1d |  |-  ( x = A -> ( ( x ^ 2 ) <_ A <-> ( A ^ 2 ) <_ A ) ) | 
						
							| 21 | 20 1 | elrab2 |  |-  ( A e. S <-> ( A e. RR+ /\ ( A ^ 2 ) <_ A ) ) | 
						
							| 22 | 3 18 21 | sylanbrc |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) |