| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 | ⊢ 𝑆  =  { 𝑥  ∈  ℝ+  ∣  ( 𝑥 ↑ 2 )  ≤  𝐴 } | 
						
							| 2 |  | 01sqrexlem1.2 | ⊢ 𝐵  =  sup ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 4 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | rpgt0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  <  𝐴 ) | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 |  | lemul1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐴  ≤  1  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 1  ·  𝐴 ) ) ) | 
						
							| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐴  ≤  1  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 1  ·  𝐴 ) ) ) | 
						
							| 9 | 4 4 5 8 | syl12anc | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ≤  1  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 1  ·  𝐴 ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐴  ·  𝐴 )  ≤  ( 1  ·  𝐴 ) ) | 
						
							| 11 |  | rpcn | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 13 |  | sqval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  𝐴 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐴  ·  𝐴 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 16 | 11 | mullidd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 18 | 10 15 17 | 3brtr3d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  ( 𝐴 ↑ 2 )  ≤  𝐴 ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 | 19 | breq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 ↑ 2 )  ≤  𝐴  ↔  ( 𝐴 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 21 | 20 1 | elrab2 | ⊢ ( 𝐴  ∈  𝑆  ↔  ( 𝐴  ∈  ℝ+  ∧  ( 𝐴 ↑ 2 )  ≤  𝐴 ) ) | 
						
							| 22 | 3 18 21 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐴  ≤  1 )  →  𝐴  ∈  𝑆 ) |