| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 01sqrexlem1.1 |  |-  S = { x e. RR+ | ( x ^ 2 ) <_ A } | 
						
							| 2 |  | 01sqrexlem1.2 |  |-  B = sup ( S , RR , < ) | 
						
							| 3 |  | ssrab2 |  |-  { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR+ | 
						
							| 4 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 5 | 3 4 | sstri |  |-  { x e. RR+ | ( x ^ 2 ) <_ A } C_ RR | 
						
							| 6 | 1 5 | eqsstri |  |-  S C_ RR | 
						
							| 7 | 6 | a1i |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> S C_ RR ) | 
						
							| 8 | 1 2 | 01sqrexlem2 |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A e. S ) | 
						
							| 9 | 8 | ne0d |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> S =/= (/) ) | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 | 1 2 | 01sqrexlem1 |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> A. y e. S y <_ 1 ) | 
						
							| 12 |  | brralrspcev |  |-  ( ( 1 e. RR /\ A. y e. S y <_ 1 ) -> E. z e. RR A. y e. S y <_ z ) | 
						
							| 13 | 10 11 12 | sylancr |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> E. z e. RR A. y e. S y <_ z ) | 
						
							| 14 | 7 9 13 | 3jca |  |-  ( ( A e. RR+ /\ A <_ 1 ) -> ( S C_ RR /\ S =/= (/) /\ E. z e. RR A. y e. S y <_ z ) ) |