| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clscld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ssdif0 | ⊢ ( 𝑋  ⊆  𝑆  ↔  ( 𝑋  ∖  𝑆 )  =  ∅ ) | 
						
							| 3 |  | eqss | ⊢ ( 𝑆  =  𝑋  ↔  ( 𝑆  ⊆  𝑋  ∧  𝑋  ⊆  𝑆 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑆  =  𝑋  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) | 
						
							| 5 | 1 | ntrtop | ⊢ ( 𝐽  ∈  Top  →  ( ( int ‘ 𝐽 ) ‘ 𝑋 )  =  𝑋 ) | 
						
							| 6 | 4 5 | sylan9eqr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  𝑋 ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  ↔  𝑋  =  ∅ ) ) | 
						
							| 8 | 7 | biimpd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  =  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  →  𝑋  =  ∅ ) ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  =  𝑋  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  →  𝑋  =  ∅ ) ) ) | 
						
							| 10 | 3 9 | biimtrrid | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝑆  ⊆  𝑋  ∧  𝑋  ⊆  𝑆 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  →  𝑋  =  ∅ ) ) ) | 
						
							| 11 | 10 | expd | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ⊆  𝑋  →  ( 𝑋  ⊆  𝑆  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  →  𝑋  =  ∅ ) ) ) ) | 
						
							| 12 | 11 | com34 | ⊢ ( 𝐽  ∈  Top  →  ( 𝑆  ⊆  𝑋  →  ( ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅  →  ( 𝑋  ⊆  𝑆  →  𝑋  =  ∅ ) ) ) ) | 
						
							| 13 | 12 | imp32 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) )  →  ( 𝑋  ⊆  𝑆  →  𝑋  =  ∅ ) ) | 
						
							| 14 | 2 13 | biimtrrid | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) )  →  ( ( 𝑋  ∖  𝑆 )  =  ∅  →  𝑋  =  ∅ ) ) | 
						
							| 15 | 14 | necon3d | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) )  →  ( 𝑋  ≠  ∅  →  ( 𝑋  ∖  𝑆 )  ≠  ∅ ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( 𝐽  ∈  Top  ∧  ( 𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) )  ∧  𝑋  ≠  ∅ )  →  ( 𝑋  ∖  𝑆 )  ≠  ∅ ) | 
						
							| 17 | 16 | an32s | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝑋  ≠  ∅ )  ∧  ( 𝑆  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ 𝑆 )  =  ∅ ) )  →  ( 𝑋  ∖  𝑆 )  ≠  ∅ ) |