Metamath Proof Explorer


Theorem 0ntr

Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion 0ntr ( ( ( 𝐽 ∈ Top ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 ssdif0 ( 𝑋𝑆 ↔ ( 𝑋𝑆 ) = ∅ )
3 eqss ( 𝑆 = 𝑋 ↔ ( 𝑆𝑋𝑋𝑆 ) )
4 fveq2 ( 𝑆 = 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) )
5 1 ntrtop ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 )
6 4 5 sylan9eqr ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑋 )
7 6 eqeq1d ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ 𝑋 = ∅ ) )
8 7 biimpd ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) )
9 8 ex ( 𝐽 ∈ Top → ( 𝑆 = 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) )
10 3 9 syl5bir ( 𝐽 ∈ Top → ( ( 𝑆𝑋𝑋𝑆 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) )
11 10 expd ( 𝐽 ∈ Top → ( 𝑆𝑋 → ( 𝑋𝑆 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) )
12 11 com34 ( 𝐽 ∈ Top → ( 𝑆𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → ( 𝑋𝑆𝑋 = ∅ ) ) ) )
13 12 imp32 ( ( 𝐽 ∈ Top ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋𝑆𝑋 = ∅ ) )
14 2 13 syl5bir ( ( 𝐽 ∈ Top ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( ( 𝑋𝑆 ) = ∅ → 𝑋 = ∅ ) )
15 14 necon3d ( ( 𝐽 ∈ Top ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ≠ ∅ → ( 𝑋𝑆 ) ≠ ∅ ) )
16 15 imp ( ( ( 𝐽 ∈ Top ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋𝑆 ) ≠ ∅ )
17 16 an32s ( ( ( 𝐽 ∈ Top ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑆𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋𝑆 ) ≠ ∅ )