| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0subgALT.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | id | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 5 | 1 | 0subm | ⊢ ( 𝐺  ∈  Mnd  →  {  0  }  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 7 | 2 1 | od1 | ⊢ ( 𝐺  ∈  Grp  →  ( ( od ‘ 𝐺 ) ‘  0  )  =  1 ) | 
						
							| 8 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 9 | 7 8 | eqeltrdi | ⊢ ( 𝐺  ∈  Grp  →  ( ( od ‘ 𝐺 ) ‘  0  )  ∈  ℕ ) | 
						
							| 10 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑎  =   0   →  ( ( od ‘ 𝐺 ) ‘ 𝑎 )  =  ( ( od ‘ 𝐺 ) ‘  0  ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑎  =   0   →  ( ( ( od ‘ 𝐺 ) ‘ 𝑎 )  ∈  ℕ  ↔  ( ( od ‘ 𝐺 ) ‘  0  )  ∈  ℕ ) ) | 
						
							| 13 | 10 12 | ralsn | ⊢ ( ∀ 𝑎  ∈  {  0  } ( ( od ‘ 𝐺 ) ‘ 𝑎 )  ∈  ℕ  ↔  ( ( od ‘ 𝐺 ) ‘  0  )  ∈  ℕ ) | 
						
							| 14 | 9 13 | sylibr | ⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑎  ∈  {  0  } ( ( od ‘ 𝐺 ) ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 15 | 2 3 6 14 | finodsubmsubg | ⊢ ( 𝐺  ∈  Grp  →  {  0  }  ∈  ( SubGrp ‘ 𝐺 ) ) |