| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0subgALT.z |
|- .0. = ( 0g ` G ) |
| 2 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
| 3 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
| 4 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 5 |
1
|
0subm |
|- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |
| 6 |
4 5
|
syl |
|- ( G e. Grp -> { .0. } e. ( SubMnd ` G ) ) |
| 7 |
2 1
|
od1 |
|- ( G e. Grp -> ( ( od ` G ) ` .0. ) = 1 ) |
| 8 |
|
1nn |
|- 1 e. NN |
| 9 |
7 8
|
eqeltrdi |
|- ( G e. Grp -> ( ( od ` G ) ` .0. ) e. NN ) |
| 10 |
1
|
fvexi |
|- .0. e. _V |
| 11 |
|
fveq2 |
|- ( a = .0. -> ( ( od ` G ) ` a ) = ( ( od ` G ) ` .0. ) ) |
| 12 |
11
|
eleq1d |
|- ( a = .0. -> ( ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) ) |
| 13 |
10 12
|
ralsn |
|- ( A. a e. { .0. } ( ( od ` G ) ` a ) e. NN <-> ( ( od ` G ) ` .0. ) e. NN ) |
| 14 |
9 13
|
sylibr |
|- ( G e. Grp -> A. a e. { .0. } ( ( od ` G ) ` a ) e. NN ) |
| 15 |
2 3 6 14
|
finodsubmsubg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |