Description: 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 163prm | ⊢ ; ; 1 6 3 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 4 | 3nn | ⊢ 3 ∈ ℕ | |
| 5 | 3 4 | decnncl | ⊢ ; ; 1 6 3 ∈ ℕ |
| 6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 8 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 9 | 1lt8 | ⊢ 1 < 8 | |
| 10 | 6lt10 | ⊢ 6 < ; 1 0 | |
| 11 | 3lt10 | ⊢ 3 < ; 1 0 | |
| 12 | 1 6 2 7 8 1 9 10 11 | 3decltc | ⊢ ; ; 1 6 3 < ; ; 8 4 1 |
| 13 | 6nn | ⊢ 6 ∈ ℕ | |
| 14 | 1 13 | decnncl | ⊢ ; 1 6 ∈ ℕ |
| 15 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 16 | 14 8 1 15 | declti | ⊢ 1 < ; ; 1 6 3 |
| 17 | 2cn | ⊢ 2 ∈ ℂ | |
| 18 | 17 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 19 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 20 | 3 1 18 19 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 1 6 3 |
| 21 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 22 | 21 7 | deccl | ⊢ ; 5 4 ∈ ℕ0 |
| 23 | 1nn | ⊢ 1 ∈ ℕ | |
| 24 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 25 | eqid | ⊢ ; 5 4 = ; 5 4 | |
| 26 | 1 | dec0h | ⊢ 1 = ; 0 1 |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | 27 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 29 | 28 | oveq2i | ⊢ ( ( 3 · 5 ) + ( 0 + 1 ) ) = ( ( 3 · 5 ) + 1 ) |
| 30 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 31 | 5cn | ⊢ 5 ∈ ℂ | |
| 32 | 3cn | ⊢ 3 ∈ ℂ | |
| 33 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 34 | 31 32 33 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
| 35 | 1 21 30 34 | decsuc | ⊢ ( ( 3 · 5 ) + 1 ) = ; 1 6 |
| 36 | 29 35 | eqtri | ⊢ ( ( 3 · 5 ) + ( 0 + 1 ) ) = ; 1 6 |
| 37 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 38 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 39 | 4cn | ⊢ 4 ∈ ℂ | |
| 40 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
| 41 | 39 32 40 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
| 42 | 1 37 38 41 | decsuc | ⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
| 43 | 21 7 24 1 25 26 8 8 1 36 42 | decma2c | ⊢ ( ( 3 · ; 5 4 ) + 1 ) = ; ; 1 6 3 |
| 44 | 1lt3 | ⊢ 1 < 3 | |
| 45 | 4 22 23 43 44 | ndvdsi | ⊢ ¬ 3 ∥ ; ; 1 6 3 |
| 46 | 3lt5 | ⊢ 3 < 5 | |
| 47 | 3 4 46 | dec5dvds | ⊢ ¬ 5 ∥ ; ; 1 6 3 |
| 48 | 7nn | ⊢ 7 ∈ ℕ | |
| 49 | 37 8 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
| 50 | 2nn | ⊢ 2 ∈ ℕ | |
| 51 | eqid | ⊢ ; 2 3 = ; 2 3 | |
| 52 | 37 | dec0h | ⊢ 2 = ; 0 2 |
| 53 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 54 | 17 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 55 | 54 | oveq2i | ⊢ ( ( 7 · 2 ) + ( 0 + 2 ) ) = ( ( 7 · 2 ) + 2 ) |
| 56 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
| 57 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
| 58 | 1 7 37 56 57 | decaddi | ⊢ ( ( 7 · 2 ) + 2 ) = ; 1 6 |
| 59 | 55 58 | eqtri | ⊢ ( ( 7 · 2 ) + ( 0 + 2 ) ) = ; 1 6 |
| 60 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 61 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 62 | 37 1 37 60 61 | decaddi | ⊢ ( ( 7 · 3 ) + 2 ) = ; 2 3 |
| 63 | 37 8 24 37 51 52 53 8 37 59 62 | decma2c | ⊢ ( ( 7 · ; 2 3 ) + 2 ) = ; ; 1 6 3 |
| 64 | 2lt7 | ⊢ 2 < 7 | |
| 65 | 48 49 50 63 64 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 1 6 3 |
| 66 | 1 23 | decnncl | ⊢ ; 1 1 ∈ ℕ |
| 67 | 1 7 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
| 68 | 9nn | ⊢ 9 ∈ ℕ | |
| 69 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 70 | eqid | ⊢ ; 1 4 = ; 1 4 | |
| 71 | 69 | dec0h | ⊢ 9 = ; 0 9 |
| 72 | 1 1 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
| 73 | 31 | addlidi | ⊢ ( 0 + 5 ) = 5 |
| 74 | 73 | oveq2i | ⊢ ( ( ; 1 1 · 1 ) + ( 0 + 5 ) ) = ( ( ; 1 1 · 1 ) + 5 ) |
| 75 | 66 | nncni | ⊢ ; 1 1 ∈ ℂ |
| 76 | 75 | mulridi | ⊢ ( ; 1 1 · 1 ) = ; 1 1 |
| 77 | 31 27 30 | addcomli | ⊢ ( 1 + 5 ) = 6 |
| 78 | 1 1 21 76 77 | decaddi | ⊢ ( ( ; 1 1 · 1 ) + 5 ) = ; 1 6 |
| 79 | 74 78 | eqtri | ⊢ ( ( ; 1 1 · 1 ) + ( 0 + 5 ) ) = ; 1 6 |
| 80 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 81 | 39 | mullidi | ⊢ ( 1 · 4 ) = 4 |
| 82 | 81 28 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 83 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 84 | 82 83 | eqtri | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = 5 |
| 85 | 81 | oveq1i | ⊢ ( ( 1 · 4 ) + 9 ) = ( 4 + 9 ) |
| 86 | 9cn | ⊢ 9 ∈ ℂ | |
| 87 | 9p4e13 | ⊢ ( 9 + 4 ) = ; 1 3 | |
| 88 | 86 39 87 | addcomli | ⊢ ( 4 + 9 ) = ; 1 3 |
| 89 | 85 88 | eqtri | ⊢ ( ( 1 · 4 ) + 9 ) = ; 1 3 |
| 90 | 1 1 24 69 80 71 7 8 1 84 89 | decmac | ⊢ ( ( ; 1 1 · 4 ) + 9 ) = ; 5 3 |
| 91 | 1 7 24 69 70 71 72 8 21 79 90 | decma2c | ⊢ ( ( ; 1 1 · ; 1 4 ) + 9 ) = ; ; 1 6 3 |
| 92 | 9lt10 | ⊢ 9 < ; 1 0 | |
| 93 | 23 1 69 92 | declti | ⊢ 9 < ; 1 1 |
| 94 | 66 67 68 91 93 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 1 6 3 |
| 95 | 1 4 | decnncl | ⊢ ; 1 3 ∈ ℕ |
| 96 | 1 37 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 97 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 98 | 53 | dec0h | ⊢ 7 = ; 0 7 |
| 99 | 1 8 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
| 100 | eqid | ⊢ ; 1 3 = ; 1 3 | |
| 101 | 32 | addlidi | ⊢ ( 0 + 3 ) = 3 |
| 102 | 8 | dec0h | ⊢ 3 = ; 0 3 |
| 103 | 101 102 | eqtri | ⊢ ( 0 + 3 ) = ; 0 3 |
| 104 | 27 | mulridi | ⊢ ( 1 · 1 ) = 1 |
| 105 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 106 | 104 105 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
| 107 | 27 | addridi | ⊢ ( 1 + 0 ) = 1 |
| 108 | 106 107 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = 1 |
| 109 | 32 | mulridi | ⊢ ( 3 · 1 ) = 3 |
| 110 | 109 | oveq1i | ⊢ ( ( 3 · 1 ) + 3 ) = ( 3 + 3 ) |
| 111 | 3p3e6 | ⊢ ( 3 + 3 ) = 6 | |
| 112 | 110 111 | eqtri | ⊢ ( ( 3 · 1 ) + 3 ) = 6 |
| 113 | 2 | dec0h | ⊢ 6 = ; 0 6 |
| 114 | 112 113 | eqtri | ⊢ ( ( 3 · 1 ) + 3 ) = ; 0 6 |
| 115 | 1 8 24 8 100 103 1 2 24 108 114 | decmac | ⊢ ( ( ; 1 3 · 1 ) + ( 0 + 3 ) ) = ; 1 6 |
| 116 | 18 28 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
| 117 | 116 38 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3 |
| 118 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 119 | 118 | oveq1i | ⊢ ( ( 3 · 2 ) + 7 ) = ( 6 + 7 ) |
| 120 | 7cn | ⊢ 7 ∈ ℂ | |
| 121 | 6cn | ⊢ 6 ∈ ℂ | |
| 122 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
| 123 | 120 121 122 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
| 124 | 119 123 | eqtri | ⊢ ( ( 3 · 2 ) + 7 ) = ; 1 3 |
| 125 | 1 8 24 53 100 98 37 8 1 117 124 | decmac | ⊢ ( ( ; 1 3 · 2 ) + 7 ) = ; 3 3 |
| 126 | 1 37 24 53 97 98 99 8 8 115 125 | decma2c | ⊢ ( ( ; 1 3 · ; 1 2 ) + 7 ) = ; ; 1 6 3 |
| 127 | 7lt10 | ⊢ 7 < ; 1 0 | |
| 128 | 23 8 53 127 | declti | ⊢ 7 < ; 1 3 |
| 129 | 95 96 48 126 128 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 1 6 3 |
| 130 | 1 48 | decnncl | ⊢ ; 1 7 ∈ ℕ |
| 131 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
| 132 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 133 | eqid | ⊢ ; 1 0 = ; 1 0 | |
| 134 | 86 | mullidi | ⊢ ( 1 · 9 ) = 9 |
| 135 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 136 | 121 27 135 | addcomli | ⊢ ( 1 + 6 ) = 7 |
| 137 | 134 136 | oveq12i | ⊢ ( ( 1 · 9 ) + ( 1 + 6 ) ) = ( 9 + 7 ) |
| 138 | 9p7e16 | ⊢ ( 9 + 7 ) = ; 1 6 | |
| 139 | 137 138 | eqtri | ⊢ ( ( 1 · 9 ) + ( 1 + 6 ) ) = ; 1 6 |
| 140 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
| 141 | 86 120 140 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
| 142 | 141 | oveq1i | ⊢ ( ( 7 · 9 ) + 0 ) = ( ; 6 3 + 0 ) |
| 143 | 2 8 | deccl | ⊢ ; 6 3 ∈ ℕ0 |
| 144 | 143 | nn0cni | ⊢ ; 6 3 ∈ ℂ |
| 145 | 144 | addridi | ⊢ ( ; 6 3 + 0 ) = ; 6 3 |
| 146 | 142 145 | eqtri | ⊢ ( ( 7 · 9 ) + 0 ) = ; 6 3 |
| 147 | 1 53 1 24 132 133 69 8 2 139 146 | decmac | ⊢ ( ( ; 1 7 · 9 ) + ; 1 0 ) = ; ; 1 6 3 |
| 148 | 7pos | ⊢ 0 < 7 | |
| 149 | 1 24 48 148 | declt | ⊢ ; 1 0 < ; 1 7 |
| 150 | 130 69 131 147 149 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 1 6 3 |
| 151 | 1 68 | decnncl | ⊢ ; 1 9 ∈ ℕ |
| 152 | eqid | ⊢ ; 1 9 = ; 1 9 | |
| 153 | 8cn | ⊢ 8 ∈ ℂ | |
| 154 | 153 | mullidi | ⊢ ( 1 · 8 ) = 8 |
| 155 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
| 156 | 120 27 155 | addcomli | ⊢ ( 1 + 7 ) = 8 |
| 157 | 154 156 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 1 + 7 ) ) = ( 8 + 8 ) |
| 158 | 8p8e16 | ⊢ ( 8 + 8 ) = ; 1 6 | |
| 159 | 157 158 | eqtri | ⊢ ( ( 1 · 8 ) + ( 1 + 7 ) ) = ; 1 6 |
| 160 | 9t8e72 | ⊢ ( 9 · 8 ) = ; 7 2 | |
| 161 | 53 37 38 160 | decsuc | ⊢ ( ( 9 · 8 ) + 1 ) = ; 7 3 |
| 162 | 1 69 1 1 152 80 6 8 53 159 161 | decmac | ⊢ ( ( ; 1 9 · 8 ) + ; 1 1 ) = ; ; 1 6 3 |
| 163 | 1lt9 | ⊢ 1 < 9 | |
| 164 | 1 1 68 163 | declt | ⊢ ; 1 1 < ; 1 9 |
| 165 | 151 6 66 162 164 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 1 6 3 |
| 166 | 37 4 | decnncl | ⊢ ; 2 3 ∈ ℕ |
| 167 | 120 17 56 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
| 168 | 1 7 37 167 57 | decaddi | ⊢ ( ( 2 · 7 ) + 2 ) = ; 1 6 |
| 169 | 120 32 60 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 170 | 37 1 37 169 61 | decaddi | ⊢ ( ( 3 · 7 ) + 2 ) = ; 2 3 |
| 171 | 37 8 37 51 53 8 37 168 170 | decrmac | ⊢ ( ( ; 2 3 · 7 ) + 2 ) = ; ; 1 6 3 |
| 172 | 2lt10 | ⊢ 2 < ; 1 0 | |
| 173 | 50 8 37 172 | declti | ⊢ 2 < ; 2 3 |
| 174 | 166 53 50 171 173 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 1 6 3 |
| 175 | 5 12 16 20 45 47 65 94 129 150 165 174 | prmlem2 | ⊢ ; ; 1 6 3 ∈ ℙ |