Description: 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 317prm | ⊢ ; ; 3 1 7 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
| 4 | 7nn | ⊢ 7 ∈ ℕ | |
| 5 | 3 4 | decnncl | ⊢ ; ; 3 1 7 ∈ ℕ |
| 6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 8 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 9 | 3lt8 | ⊢ 3 < 8 | |
| 10 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 11 | 7lt10 | ⊢ 7 < ; 1 0 | |
| 12 | 1 6 2 7 8 2 9 10 11 | 3decltc | ⊢ ; ; 3 1 7 < ; ; 8 4 1 |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | 1 13 | decnncl | ⊢ ; 3 1 ∈ ℕ |
| 15 | 14 8 2 10 | declti | ⊢ 1 < ; ; 3 1 7 |
| 16 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 17 | df-7 | ⊢ 7 = ( 6 + 1 ) | |
| 18 | 3 1 16 17 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 3 1 7 |
| 19 | 3nn | ⊢ 3 ∈ ℕ | |
| 20 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 21 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 22 | 20 21 | deccl | ⊢ ; ; 1 0 5 ∈ ℕ0 |
| 23 | 2nn | ⊢ 2 ∈ ℕ | |
| 24 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 25 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 26 | eqid | ⊢ ; ; 1 0 5 = ; ; 1 0 5 | |
| 27 | 25 | dec0h | ⊢ 2 = ; 0 2 |
| 28 | eqid | ⊢ ; 1 0 = ; 1 0 | |
| 29 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 30 | 29 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 31 | 2 | dec0h | ⊢ 1 = ; 0 1 |
| 32 | 30 31 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
| 33 | 3cn | ⊢ 3 ∈ ℂ | |
| 34 | 33 | mulridi | ⊢ ( 3 · 1 ) = 3 |
| 35 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 36 | 34 35 | oveq12i | ⊢ ( ( 3 · 1 ) + ( 0 + 0 ) ) = ( 3 + 0 ) |
| 37 | 33 | addridi | ⊢ ( 3 + 0 ) = 3 |
| 38 | 36 37 | eqtri | ⊢ ( ( 3 · 1 ) + ( 0 + 0 ) ) = 3 |
| 39 | 33 | mul01i | ⊢ ( 3 · 0 ) = 0 |
| 40 | 39 | oveq1i | ⊢ ( ( 3 · 0 ) + 1 ) = ( 0 + 1 ) |
| 41 | 40 30 | eqtri | ⊢ ( ( 3 · 0 ) + 1 ) = 1 |
| 42 | 41 31 | eqtri | ⊢ ( ( 3 · 0 ) + 1 ) = ; 0 1 |
| 43 | 2 24 24 2 28 32 1 2 24 38 42 | decma2c | ⊢ ( ( 3 · ; 1 0 ) + ( 0 + 1 ) ) = ; 3 1 |
| 44 | 5cn | ⊢ 5 ∈ ℂ | |
| 45 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 46 | 44 33 45 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
| 47 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 48 | 2 21 25 46 47 | decaddi | ⊢ ( ( 3 · 5 ) + 2 ) = ; 1 7 |
| 49 | 20 21 24 25 26 27 1 8 2 43 48 | decma2c | ⊢ ( ( 3 · ; ; 1 0 5 ) + 2 ) = ; ; 3 1 7 |
| 50 | 2lt3 | ⊢ 2 < 3 | |
| 51 | 19 22 23 49 50 | ndvdsi | ⊢ ¬ 3 ∥ ; ; 3 1 7 |
| 52 | 2lt5 | ⊢ 2 < 5 | |
| 53 | 3 23 52 47 | dec5dvds2 | ⊢ ¬ 5 ∥ ; ; 3 1 7 |
| 54 | 7 21 | deccl | ⊢ ; 4 5 ∈ ℕ0 |
| 55 | eqid | ⊢ ; 4 5 = ; 4 5 | |
| 56 | 33 | addlidi | ⊢ ( 0 + 3 ) = 3 |
| 57 | 56 | oveq2i | ⊢ ( ( 7 · 4 ) + ( 0 + 3 ) ) = ( ( 7 · 4 ) + 3 ) |
| 58 | 7t4e28 | ⊢ ( 7 · 4 ) = ; 2 8 | |
| 59 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 60 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
| 61 | 25 6 1 58 59 2 60 | decaddci | ⊢ ( ( 7 · 4 ) + 3 ) = ; 3 1 |
| 62 | 57 61 | eqtri | ⊢ ( ( 7 · 4 ) + ( 0 + 3 ) ) = ; 3 1 |
| 63 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
| 64 | 1 21 25 63 47 | decaddi | ⊢ ( ( 7 · 5 ) + 2 ) = ; 3 7 |
| 65 | 7 21 24 25 55 27 8 8 1 62 64 | decma2c | ⊢ ( ( 7 · ; 4 5 ) + 2 ) = ; ; 3 1 7 |
| 66 | 2lt7 | ⊢ 2 < 7 | |
| 67 | 4 54 23 65 66 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 3 1 7 |
| 68 | 2 13 | decnncl | ⊢ ; 1 1 ∈ ℕ |
| 69 | 25 6 | deccl | ⊢ ; 2 8 ∈ ℕ0 |
| 70 | 9nn | ⊢ 9 ∈ ℕ | |
| 71 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 72 | eqid | ⊢ ; 2 8 = ; 2 8 | |
| 73 | 71 | dec0h | ⊢ 9 = ; 0 9 |
| 74 | 2 2 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
| 75 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 76 | 9cn | ⊢ 9 ∈ ℂ | |
| 77 | 76 | addlidi | ⊢ ( 0 + 9 ) = 9 |
| 78 | 77 73 | eqtri | ⊢ ( 0 + 9 ) = ; 0 9 |
| 79 | 2cn | ⊢ 2 ∈ ℂ | |
| 80 | 79 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 81 | 80 30 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
| 82 | 81 59 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3 |
| 83 | 80 | oveq1i | ⊢ ( ( 1 · 2 ) + 9 ) = ( 2 + 9 ) |
| 84 | 9p2e11 | ⊢ ( 9 + 2 ) = ; 1 1 | |
| 85 | 76 79 84 | addcomli | ⊢ ( 2 + 9 ) = ; 1 1 |
| 86 | 83 85 | eqtri | ⊢ ( ( 1 · 2 ) + 9 ) = ; 1 1 |
| 87 | 2 2 24 71 75 78 25 2 2 82 86 | decmac | ⊢ ( ( ; 1 1 · 2 ) + ( 0 + 9 ) ) = ; 3 1 |
| 88 | 8cn | ⊢ 8 ∈ ℂ | |
| 89 | 88 | mullidi | ⊢ ( 1 · 8 ) = 8 |
| 90 | 89 30 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 1 ) ) = ( 8 + 1 ) |
| 91 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
| 92 | 90 91 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 1 ) ) = 9 |
| 93 | 89 | oveq1i | ⊢ ( ( 1 · 8 ) + 9 ) = ( 8 + 9 ) |
| 94 | 9p8e17 | ⊢ ( 9 + 8 ) = ; 1 7 | |
| 95 | 76 88 94 | addcomli | ⊢ ( 8 + 9 ) = ; 1 7 |
| 96 | 93 95 | eqtri | ⊢ ( ( 1 · 8 ) + 9 ) = ; 1 7 |
| 97 | 2 2 24 71 75 73 6 8 2 92 96 | decmac | ⊢ ( ( ; 1 1 · 8 ) + 9 ) = ; 9 7 |
| 98 | 25 6 24 71 72 73 74 8 71 87 97 | decma2c | ⊢ ( ( ; 1 1 · ; 2 8 ) + 9 ) = ; ; 3 1 7 |
| 99 | 9lt10 | ⊢ 9 < ; 1 0 | |
| 100 | 13 2 71 99 | declti | ⊢ 9 < ; 1 1 |
| 101 | 68 69 70 98 100 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 3 1 7 |
| 102 | 2 19 | decnncl | ⊢ ; 1 3 ∈ ℕ |
| 103 | 25 7 | deccl | ⊢ ; 2 4 ∈ ℕ0 |
| 104 | 5nn | ⊢ 5 ∈ ℕ | |
| 105 | eqid | ⊢ ; 2 4 = ; 2 4 | |
| 106 | 21 | dec0h | ⊢ 5 = ; 0 5 |
| 107 | 2 1 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
| 108 | eqid | ⊢ ; 1 3 = ; 1 3 | |
| 109 | 44 | addlidi | ⊢ ( 0 + 5 ) = 5 |
| 110 | 109 106 | eqtri | ⊢ ( 0 + 5 ) = ; 0 5 |
| 111 | 16 | oveq1i | ⊢ ( ( 3 · 2 ) + 5 ) = ( 6 + 5 ) |
| 112 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
| 113 | 111 112 | eqtri | ⊢ ( ( 3 · 2 ) + 5 ) = ; 1 1 |
| 114 | 2 1 24 21 108 110 25 2 2 82 113 | decmac | ⊢ ( ( ; 1 3 · 2 ) + ( 0 + 5 ) ) = ; 3 1 |
| 115 | 4cn | ⊢ 4 ∈ ℂ | |
| 116 | 115 | mullidi | ⊢ ( 1 · 4 ) = 4 |
| 117 | 116 30 | oveq12i | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 118 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 119 | 117 118 | eqtri | ⊢ ( ( 1 · 4 ) + ( 0 + 1 ) ) = 5 |
| 120 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
| 121 | 115 33 120 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
| 122 | 44 79 47 | addcomli | ⊢ ( 2 + 5 ) = 7 |
| 123 | 2 25 21 121 122 | decaddi | ⊢ ( ( 3 · 4 ) + 5 ) = ; 1 7 |
| 124 | 2 1 24 21 108 106 7 8 2 119 123 | decmac | ⊢ ( ( ; 1 3 · 4 ) + 5 ) = ; 5 7 |
| 125 | 25 7 24 21 105 106 107 8 21 114 124 | decma2c | ⊢ ( ( ; 1 3 · ; 2 4 ) + 5 ) = ; ; 3 1 7 |
| 126 | 5lt10 | ⊢ 5 < ; 1 0 | |
| 127 | 13 1 21 126 | declti | ⊢ 5 < ; 1 3 |
| 128 | 102 103 104 125 127 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 3 1 7 |
| 129 | 2 4 | decnncl | ⊢ ; 1 7 ∈ ℕ |
| 130 | 2 6 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
| 131 | eqid | ⊢ ; 1 8 = ; 1 8 | |
| 132 | 2 8 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
| 133 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 134 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 135 | 33 29 134 | addcomli | ⊢ ( 1 + 3 ) = 4 |
| 136 | 24 2 2 1 31 108 30 135 | decadd | ⊢ ( 1 + ; 1 3 ) = ; 1 4 |
| 137 | 29 | mulridi | ⊢ ( 1 · 1 ) = 1 |
| 138 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 139 | 137 138 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = ( 1 + 2 ) |
| 140 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 141 | 139 140 | eqtri | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = 3 |
| 142 | 7cn | ⊢ 7 ∈ ℂ | |
| 143 | 142 | mulridi | ⊢ ( 7 · 1 ) = 7 |
| 144 | 143 | oveq1i | ⊢ ( ( 7 · 1 ) + 4 ) = ( 7 + 4 ) |
| 145 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
| 146 | 144 145 | eqtri | ⊢ ( ( 7 · 1 ) + 4 ) = ; 1 1 |
| 147 | 2 8 2 7 133 136 2 2 2 141 146 | decmac | ⊢ ( ( ; 1 7 · 1 ) + ( 1 + ; 1 3 ) ) = ; 3 1 |
| 148 | 89 109 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ( 8 + 5 ) |
| 149 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
| 150 | 148 149 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ; 1 3 |
| 151 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 152 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 153 | 8t7e56 | ⊢ ( 8 · 7 ) = ; 5 6 | |
| 154 | 88 142 153 | mulcomli | ⊢ ( 7 · 8 ) = ; 5 6 |
| 155 | 21 151 152 154 | decsuc | ⊢ ( ( 7 · 8 ) + 1 ) = ; 5 7 |
| 156 | 2 8 24 2 133 31 6 8 21 150 155 | decmac | ⊢ ( ( ; 1 7 · 8 ) + 1 ) = ; ; 1 3 7 |
| 157 | 2 6 2 2 131 75 132 8 107 147 156 | decma2c | ⊢ ( ( ; 1 7 · ; 1 8 ) + ; 1 1 ) = ; ; 3 1 7 |
| 158 | 1lt7 | ⊢ 1 < 7 | |
| 159 | 2 2 4 158 | declt | ⊢ ; 1 1 < ; 1 7 |
| 160 | 129 130 68 157 159 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 3 1 7 |
| 161 | 2 70 | decnncl | ⊢ ; 1 9 ∈ ℕ |
| 162 | 2 151 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 163 | eqid | ⊢ ; 1 6 = ; 1 6 | |
| 164 | 2 71 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
| 165 | eqid | ⊢ ; 1 9 = ; 1 9 | |
| 166 | 24 2 2 2 31 75 30 138 | decadd | ⊢ ( 1 + ; 1 1 ) = ; 1 2 |
| 167 | 76 | mulridi | ⊢ ( 9 · 1 ) = 9 |
| 168 | 167 | oveq1i | ⊢ ( ( 9 · 1 ) + 2 ) = ( 9 + 2 ) |
| 169 | 168 84 | eqtri | ⊢ ( ( 9 · 1 ) + 2 ) = ; 1 1 |
| 170 | 2 71 2 25 165 166 2 2 2 141 169 | decmac | ⊢ ( ( ; 1 9 · 1 ) + ( 1 + ; 1 1 ) ) = ; 3 1 |
| 171 | 1 | dec0h | ⊢ 3 = ; 0 3 |
| 172 | 6cn | ⊢ 6 ∈ ℂ | |
| 173 | 172 | mullidi | ⊢ ( 1 · 6 ) = 6 |
| 174 | 173 109 | oveq12i | ⊢ ( ( 1 · 6 ) + ( 0 + 5 ) ) = ( 6 + 5 ) |
| 175 | 174 112 | eqtri | ⊢ ( ( 1 · 6 ) + ( 0 + 5 ) ) = ; 1 1 |
| 176 | 9t6e54 | ⊢ ( 9 · 6 ) = ; 5 4 | |
| 177 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
| 178 | 21 7 1 176 177 | decaddi | ⊢ ( ( 9 · 6 ) + 3 ) = ; 5 7 |
| 179 | 2 71 24 1 165 171 151 8 21 175 178 | decmac | ⊢ ( ( ; 1 9 · 6 ) + 3 ) = ; ; 1 1 7 |
| 180 | 2 151 2 1 163 108 164 8 74 170 179 | decma2c | ⊢ ( ( ; 1 9 · ; 1 6 ) + ; 1 3 ) = ; ; 3 1 7 |
| 181 | 3lt9 | ⊢ 3 < 9 | |
| 182 | 2 1 70 181 | declt | ⊢ ; 1 3 < ; 1 9 |
| 183 | 161 162 102 180 182 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 3 1 7 |
| 184 | 25 19 | decnncl | ⊢ ; 2 3 ∈ ℕ |
| 185 | 102 | nnnn0i | ⊢ ; 1 3 ∈ ℕ0 |
| 186 | 8nn | ⊢ 8 ∈ ℕ | |
| 187 | 2 186 | decnncl | ⊢ ; 1 8 ∈ ℕ |
| 188 | 25 1 | deccl | ⊢ ; 2 3 ∈ ℕ0 |
| 189 | eqid | ⊢ ; 2 3 = ; 2 3 | |
| 190 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
| 191 | 142 29 190 | addcomli | ⊢ ( 1 + 7 ) = 8 |
| 192 | 6 | dec0h | ⊢ 8 = ; 0 8 |
| 193 | 191 192 | eqtri | ⊢ ( 1 + 7 ) = ; 0 8 |
| 194 | 79 | mulridi | ⊢ ( 2 · 1 ) = 2 |
| 195 | 194 30 | oveq12i | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
| 196 | 195 59 | eqtri | ⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = 3 |
| 197 | 34 | oveq1i | ⊢ ( ( 3 · 1 ) + 8 ) = ( 3 + 8 ) |
| 198 | 88 33 60 | addcomli | ⊢ ( 3 + 8 ) = ; 1 1 |
| 199 | 197 198 | eqtri | ⊢ ( ( 3 · 1 ) + 8 ) = ; 1 1 |
| 200 | 25 1 24 6 189 193 2 2 2 196 199 | decmac | ⊢ ( ( ; 2 3 · 1 ) + ( 1 + 7 ) ) = ; 3 1 |
| 201 | 33 79 16 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 202 | 201 30 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
| 203 | 202 152 | eqtri | ⊢ ( ( 2 · 3 ) + ( 0 + 1 ) ) = 7 |
| 204 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 205 | 204 | oveq1i | ⊢ ( ( 3 · 3 ) + 8 ) = ( 9 + 8 ) |
| 206 | 205 94 | eqtri | ⊢ ( ( 3 · 3 ) + 8 ) = ; 1 7 |
| 207 | 25 1 24 6 189 192 1 8 2 203 206 | decmac | ⊢ ( ( ; 2 3 · 3 ) + 8 ) = ; 7 7 |
| 208 | 2 1 2 6 108 131 188 8 8 200 207 | decma2c | ⊢ ( ( ; 2 3 · ; 1 3 ) + ; 1 8 ) = ; ; 3 1 7 |
| 209 | 8lt10 | ⊢ 8 < ; 1 0 | |
| 210 | 1lt2 | ⊢ 1 < 2 | |
| 211 | 2 25 6 1 209 210 | decltc | ⊢ ; 1 8 < ; 2 3 |
| 212 | 184 185 187 208 211 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 3 1 7 |
| 213 | 5 12 15 18 51 53 67 101 128 160 183 212 | prmlem2 | ⊢ ; ; 3 1 7 ∈ ℙ |