Step |
Hyp |
Ref |
Expression |
1 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
2 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
3 |
1 2
|
deccl |
⊢ ; 6 3 ∈ ℕ0 |
4 |
|
1nn |
⊢ 1 ∈ ℕ |
5 |
3 4
|
decnncl |
⊢ ; ; 6 3 1 ∈ ℕ |
6 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
7 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
|
6lt8 |
⊢ 6 < 8 |
10 |
|
3lt10 |
⊢ 3 < ; 1 0 |
11 |
|
1lt10 |
⊢ 1 < ; 1 0 |
12 |
1 6 2 7 8 8 9 10 11
|
3decltc |
⊢ ; ; 6 3 1 < ; ; 8 4 1 |
13 |
|
3nn |
⊢ 3 ∈ ℕ |
14 |
1 13
|
decnncl |
⊢ ; 6 3 ∈ ℕ |
15 |
14 8 8 11
|
declti |
⊢ 1 < ; ; 6 3 1 |
16 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
17 |
|
2cn |
⊢ 2 ∈ ℂ |
18 |
17
|
mul02i |
⊢ ( 0 · 2 ) = 0 |
19 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
20 |
3 16 18 19
|
dec2dvds |
⊢ ¬ 2 ∥ ; ; 6 3 1 |
21 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
22 |
21 8
|
deccl |
⊢ ; 2 1 ∈ ℕ0 |
23 |
22 16
|
deccl |
⊢ ; ; 2 1 0 ∈ ℕ0 |
24 |
|
eqid |
⊢ ; ; 2 1 0 = ; ; 2 1 0 |
25 |
8
|
dec0h |
⊢ 1 = ; 0 1 |
26 |
|
eqid |
⊢ ; 2 1 = ; 2 1 |
27 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
28 |
16
|
dec0h |
⊢ 0 = ; 0 0 |
29 |
27 28
|
eqtri |
⊢ ( 0 + 0 ) = ; 0 0 |
30 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
31 |
30 27
|
oveq12i |
⊢ ( ( 3 · 2 ) + ( 0 + 0 ) ) = ( 6 + 0 ) |
32 |
|
6cn |
⊢ 6 ∈ ℂ |
33 |
32
|
addridi |
⊢ ( 6 + 0 ) = 6 |
34 |
31 33
|
eqtri |
⊢ ( ( 3 · 2 ) + ( 0 + 0 ) ) = 6 |
35 |
|
3t1e3 |
⊢ ( 3 · 1 ) = 3 |
36 |
35
|
oveq1i |
⊢ ( ( 3 · 1 ) + 0 ) = ( 3 + 0 ) |
37 |
|
3cn |
⊢ 3 ∈ ℂ |
38 |
37
|
addridi |
⊢ ( 3 + 0 ) = 3 |
39 |
2
|
dec0h |
⊢ 3 = ; 0 3 |
40 |
36 38 39
|
3eqtri |
⊢ ( ( 3 · 1 ) + 0 ) = ; 0 3 |
41 |
21 8 16 16 26 29 2 2 16 34 40
|
decma2c |
⊢ ( ( 3 · ; 2 1 ) + ( 0 + 0 ) ) = ; 6 3 |
42 |
37
|
mul01i |
⊢ ( 3 · 0 ) = 0 |
43 |
42
|
oveq1i |
⊢ ( ( 3 · 0 ) + 1 ) = ( 0 + 1 ) |
44 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
45 |
43 44 25
|
3eqtri |
⊢ ( ( 3 · 0 ) + 1 ) = ; 0 1 |
46 |
22 16 16 8 24 25 2 8 16 41 45
|
decma2c |
⊢ ( ( 3 · ; ; 2 1 0 ) + 1 ) = ; ; 6 3 1 |
47 |
|
1lt3 |
⊢ 1 < 3 |
48 |
13 23 4 46 47
|
ndvdsi |
⊢ ¬ 3 ∥ ; ; 6 3 1 |
49 |
|
1lt5 |
⊢ 1 < 5 |
50 |
3 4 49
|
dec5dvds |
⊢ ¬ 5 ∥ ; ; 6 3 1 |
51 |
|
7nn |
⊢ 7 ∈ ℕ |
52 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
53 |
52 16
|
deccl |
⊢ ; 9 0 ∈ ℕ0 |
54 |
|
eqid |
⊢ ; 9 0 = ; 9 0 |
55 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
56 |
27
|
oveq2i |
⊢ ( ( 7 · 9 ) + ( 0 + 0 ) ) = ( ( 7 · 9 ) + 0 ) |
57 |
|
9cn |
⊢ 9 ∈ ℂ |
58 |
|
7cn |
⊢ 7 ∈ ℂ |
59 |
|
9t7e63 |
⊢ ( 9 · 7 ) = ; 6 3 |
60 |
57 58 59
|
mulcomli |
⊢ ( 7 · 9 ) = ; 6 3 |
61 |
60
|
oveq1i |
⊢ ( ( 7 · 9 ) + 0 ) = ( ; 6 3 + 0 ) |
62 |
3
|
nn0cni |
⊢ ; 6 3 ∈ ℂ |
63 |
62
|
addridi |
⊢ ( ; 6 3 + 0 ) = ; 6 3 |
64 |
56 61 63
|
3eqtri |
⊢ ( ( 7 · 9 ) + ( 0 + 0 ) ) = ; 6 3 |
65 |
58
|
mul01i |
⊢ ( 7 · 0 ) = 0 |
66 |
65
|
oveq1i |
⊢ ( ( 7 · 0 ) + 1 ) = ( 0 + 1 ) |
67 |
66 44 25
|
3eqtri |
⊢ ( ( 7 · 0 ) + 1 ) = ; 0 1 |
68 |
52 16 16 8 54 25 55 8 16 64 67
|
decma2c |
⊢ ( ( 7 · ; 9 0 ) + 1 ) = ; ; 6 3 1 |
69 |
|
1lt7 |
⊢ 1 < 7 |
70 |
51 53 4 68 69
|
ndvdsi |
⊢ ¬ 7 ∥ ; ; 6 3 1 |
71 |
8 4
|
decnncl |
⊢ ; 1 1 ∈ ℕ |
72 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
73 |
72 55
|
deccl |
⊢ ; 5 7 ∈ ℕ0 |
74 |
|
4nn |
⊢ 4 ∈ ℕ |
75 |
|
eqid |
⊢ ; 5 7 = ; 5 7 |
76 |
7
|
dec0h |
⊢ 4 = ; 0 4 |
77 |
8 8
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
78 |
|
eqid |
⊢ ; 1 1 = ; 1 1 |
79 |
|
8cn |
⊢ 8 ∈ ℂ |
80 |
79
|
addlidi |
⊢ ( 0 + 8 ) = 8 |
81 |
6
|
dec0h |
⊢ 8 = ; 0 8 |
82 |
80 81
|
eqtri |
⊢ ( 0 + 8 ) = ; 0 8 |
83 |
|
5cn |
⊢ 5 ∈ ℂ |
84 |
83
|
mullidi |
⊢ ( 1 · 5 ) = 5 |
85 |
84 44
|
oveq12i |
⊢ ( ( 1 · 5 ) + ( 0 + 1 ) ) = ( 5 + 1 ) |
86 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
87 |
85 86
|
eqtri |
⊢ ( ( 1 · 5 ) + ( 0 + 1 ) ) = 6 |
88 |
84
|
oveq1i |
⊢ ( ( 1 · 5 ) + 8 ) = ( 5 + 8 ) |
89 |
|
8p5e13 |
⊢ ( 8 + 5 ) = ; 1 3 |
90 |
79 83 89
|
addcomli |
⊢ ( 5 + 8 ) = ; 1 3 |
91 |
88 90
|
eqtri |
⊢ ( ( 1 · 5 ) + 8 ) = ; 1 3 |
92 |
8 8 16 6 78 82 72 2 8 87 91
|
decmac |
⊢ ( ( ; 1 1 · 5 ) + ( 0 + 8 ) ) = ; 6 3 |
93 |
58
|
mullidi |
⊢ ( 1 · 7 ) = 7 |
94 |
93 44
|
oveq12i |
⊢ ( ( 1 · 7 ) + ( 0 + 1 ) ) = ( 7 + 1 ) |
95 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
96 |
94 95
|
eqtri |
⊢ ( ( 1 · 7 ) + ( 0 + 1 ) ) = 8 |
97 |
93
|
oveq1i |
⊢ ( ( 1 · 7 ) + 4 ) = ( 7 + 4 ) |
98 |
|
7p4e11 |
⊢ ( 7 + 4 ) = ; 1 1 |
99 |
97 98
|
eqtri |
⊢ ( ( 1 · 7 ) + 4 ) = ; 1 1 |
100 |
8 8 16 7 78 76 55 8 8 96 99
|
decmac |
⊢ ( ( ; 1 1 · 7 ) + 4 ) = ; 8 1 |
101 |
72 55 16 7 75 76 77 8 6 92 100
|
decma2c |
⊢ ( ( ; 1 1 · ; 5 7 ) + 4 ) = ; ; 6 3 1 |
102 |
|
4lt10 |
⊢ 4 < ; 1 0 |
103 |
4 8 7 102
|
declti |
⊢ 4 < ; 1 1 |
104 |
71 73 74 101 103
|
ndvdsi |
⊢ ¬ ; 1 1 ∥ ; ; 6 3 1 |
105 |
8 13
|
decnncl |
⊢ ; 1 3 ∈ ℕ |
106 |
7 6
|
deccl |
⊢ ; 4 8 ∈ ℕ0 |
107 |
|
eqid |
⊢ ; 4 8 = ; 4 8 |
108 |
55
|
dec0h |
⊢ 7 = ; 0 7 |
109 |
8 2
|
deccl |
⊢ ; 1 3 ∈ ℕ0 |
110 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
111 |
77
|
nn0cni |
⊢ ; 1 1 ∈ ℂ |
112 |
111
|
addlidi |
⊢ ( 0 + ; 1 1 ) = ; 1 1 |
113 |
|
4cn |
⊢ 4 ∈ ℂ |
114 |
113
|
mullidi |
⊢ ( 1 · 4 ) = 4 |
115 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
116 |
114 115
|
oveq12i |
⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
117 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
118 |
116 117
|
eqtri |
⊢ ( ( 1 · 4 ) + ( 1 + 1 ) ) = 6 |
119 |
|
4t3e12 |
⊢ ( 4 · 3 ) = ; 1 2 |
120 |
113 37 119
|
mulcomli |
⊢ ( 3 · 4 ) = ; 1 2 |
121 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
122 |
8 21 8 120 121
|
decaddi |
⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
123 |
8 2 8 8 110 112 7 2 8 118 122
|
decmac |
⊢ ( ( ; 1 3 · 4 ) + ( 0 + ; 1 1 ) ) = ; 6 3 |
124 |
79
|
mullidi |
⊢ ( 1 · 8 ) = 8 |
125 |
37
|
addlidi |
⊢ ( 0 + 3 ) = 3 |
126 |
124 125
|
oveq12i |
⊢ ( ( 1 · 8 ) + ( 0 + 3 ) ) = ( 8 + 3 ) |
127 |
|
8p3e11 |
⊢ ( 8 + 3 ) = ; 1 1 |
128 |
126 127
|
eqtri |
⊢ ( ( 1 · 8 ) + ( 0 + 3 ) ) = ; 1 1 |
129 |
|
8t3e24 |
⊢ ( 8 · 3 ) = ; 2 4 |
130 |
79 37 129
|
mulcomli |
⊢ ( 3 · 8 ) = ; 2 4 |
131 |
58 113 98
|
addcomli |
⊢ ( 4 + 7 ) = ; 1 1 |
132 |
21 7 55 130 121 8 131
|
decaddci |
⊢ ( ( 3 · 8 ) + 7 ) = ; 3 1 |
133 |
8 2 16 55 110 108 6 8 2 128 132
|
decmac |
⊢ ( ( ; 1 3 · 8 ) + 7 ) = ; ; 1 1 1 |
134 |
7 6 16 55 107 108 109 8 77 123 133
|
decma2c |
⊢ ( ( ; 1 3 · ; 4 8 ) + 7 ) = ; ; 6 3 1 |
135 |
|
7lt10 |
⊢ 7 < ; 1 0 |
136 |
4 2 55 135
|
declti |
⊢ 7 < ; 1 3 |
137 |
105 106 51 134 136
|
ndvdsi |
⊢ ¬ ; 1 3 ∥ ; ; 6 3 1 |
138 |
8 51
|
decnncl |
⊢ ; 1 7 ∈ ℕ |
139 |
2 55
|
deccl |
⊢ ; 3 7 ∈ ℕ0 |
140 |
|
2nn |
⊢ 2 ∈ ℕ |
141 |
|
eqid |
⊢ ; 3 7 = ; 3 7 |
142 |
21
|
dec0h |
⊢ 2 = ; 0 2 |
143 |
8 55
|
deccl |
⊢ ; 1 7 ∈ ℕ0 |
144 |
8 21
|
deccl |
⊢ ; 1 2 ∈ ℕ0 |
145 |
|
eqid |
⊢ ; 1 7 = ; 1 7 |
146 |
144
|
nn0cni |
⊢ ; 1 2 ∈ ℂ |
147 |
146
|
addlidi |
⊢ ( 0 + ; 1 2 ) = ; 1 2 |
148 |
37
|
mullidi |
⊢ ( 1 · 3 ) = 3 |
149 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
150 |
148 149
|
oveq12i |
⊢ ( ( 1 · 3 ) + ( 1 + 2 ) ) = ( 3 + 3 ) |
151 |
|
3p3e6 |
⊢ ( 3 + 3 ) = 6 |
152 |
150 151
|
eqtri |
⊢ ( ( 1 · 3 ) + ( 1 + 2 ) ) = 6 |
153 |
|
7t3e21 |
⊢ ( 7 · 3 ) = ; 2 1 |
154 |
21 8 21 153 149
|
decaddi |
⊢ ( ( 7 · 3 ) + 2 ) = ; 2 3 |
155 |
8 55 8 21 145 147 2 2 21 152 154
|
decmac |
⊢ ( ( ; 1 7 · 3 ) + ( 0 + ; 1 2 ) ) = ; 6 3 |
156 |
83
|
addlidi |
⊢ ( 0 + 5 ) = 5 |
157 |
93 156
|
oveq12i |
⊢ ( ( 1 · 7 ) + ( 0 + 5 ) ) = ( 7 + 5 ) |
158 |
|
7p5e12 |
⊢ ( 7 + 5 ) = ; 1 2 |
159 |
157 158
|
eqtri |
⊢ ( ( 1 · 7 ) + ( 0 + 5 ) ) = ; 1 2 |
160 |
|
7t7e49 |
⊢ ( 7 · 7 ) = ; 4 9 |
161 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
162 |
|
9p2e11 |
⊢ ( 9 + 2 ) = ; 1 1 |
163 |
7 52 21 160 161 8 162
|
decaddci |
⊢ ( ( 7 · 7 ) + 2 ) = ; 5 1 |
164 |
8 55 16 21 145 142 55 8 72 159 163
|
decmac |
⊢ ( ( ; 1 7 · 7 ) + 2 ) = ; ; 1 2 1 |
165 |
2 55 16 21 141 142 143 8 144 155 164
|
decma2c |
⊢ ( ( ; 1 7 · ; 3 7 ) + 2 ) = ; ; 6 3 1 |
166 |
|
2lt10 |
⊢ 2 < ; 1 0 |
167 |
4 55 21 166
|
declti |
⊢ 2 < ; 1 7 |
168 |
138 139 140 165 167
|
ndvdsi |
⊢ ¬ ; 1 7 ∥ ; ; 6 3 1 |
169 |
|
9nn |
⊢ 9 ∈ ℕ |
170 |
8 169
|
decnncl |
⊢ ; 1 9 ∈ ℕ |
171 |
2 2
|
deccl |
⊢ ; 3 3 ∈ ℕ0 |
172 |
|
eqid |
⊢ ; 3 3 = ; 3 3 |
173 |
8 52
|
deccl |
⊢ ; 1 9 ∈ ℕ0 |
174 |
|
eqid |
⊢ ; 1 9 = ; 1 9 |
175 |
32
|
addlidi |
⊢ ( 0 + 6 ) = 6 |
176 |
1
|
dec0h |
⊢ 6 = ; 0 6 |
177 |
175 176
|
eqtri |
⊢ ( 0 + 6 ) = ; 0 6 |
178 |
148 125
|
oveq12i |
⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = ( 3 + 3 ) |
179 |
178 151
|
eqtri |
⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = 6 |
180 |
|
9t3e27 |
⊢ ( 9 · 3 ) = ; 2 7 |
181 |
|
7p6e13 |
⊢ ( 7 + 6 ) = ; 1 3 |
182 |
21 55 1 180 121 2 181
|
decaddci |
⊢ ( ( 9 · 3 ) + 6 ) = ; 3 3 |
183 |
8 52 16 1 174 177 2 2 2 179 182
|
decmac |
⊢ ( ( ; 1 9 · 3 ) + ( 0 + 6 ) ) = ; 6 3 |
184 |
21 55 7 180 121 8 98
|
decaddci |
⊢ ( ( 9 · 3 ) + 4 ) = ; 3 1 |
185 |
8 52 16 7 174 76 2 8 2 179 184
|
decmac |
⊢ ( ( ; 1 9 · 3 ) + 4 ) = ; 6 1 |
186 |
2 2 16 7 172 76 173 8 1 183 185
|
decma2c |
⊢ ( ( ; 1 9 · ; 3 3 ) + 4 ) = ; ; 6 3 1 |
187 |
4 52 7 102
|
declti |
⊢ 4 < ; 1 9 |
188 |
170 171 74 186 187
|
ndvdsi |
⊢ ¬ ; 1 9 ∥ ; ; 6 3 1 |
189 |
21 13
|
decnncl |
⊢ ; 2 3 ∈ ℕ |
190 |
21 55
|
deccl |
⊢ ; 2 7 ∈ ℕ0 |
191 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
192 |
|
eqid |
⊢ ; 2 7 = ; 2 7 |
193 |
|
eqid |
⊢ ; 1 0 = ; 1 0 |
194 |
21 2
|
deccl |
⊢ ; 2 3 ∈ ℕ0 |
195 |
8 1
|
deccl |
⊢ ; 1 6 ∈ ℕ0 |
196 |
|
eqid |
⊢ ; 2 3 = ; 2 3 |
197 |
|
eqid |
⊢ ; 1 6 = ; 1 6 |
198 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
199 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
200 |
32 198 199
|
addcomli |
⊢ ( 1 + 6 ) = 7 |
201 |
16 8 8 1 25 197 44 200
|
decadd |
⊢ ( 1 + ; 1 6 ) = ; 1 7 |
202 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
203 |
202 115
|
oveq12i |
⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
204 |
203 117
|
eqtri |
⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = 6 |
205 |
30
|
oveq1i |
⊢ ( ( 3 · 2 ) + 7 ) = ( 6 + 7 ) |
206 |
58 32 181
|
addcomli |
⊢ ( 6 + 7 ) = ; 1 3 |
207 |
205 206
|
eqtri |
⊢ ( ( 3 · 2 ) + 7 ) = ; 1 3 |
208 |
21 2 8 55 196 201 21 2 8 204 207
|
decmac |
⊢ ( ( ; 2 3 · 2 ) + ( 1 + ; 1 6 ) ) = ; 6 3 |
209 |
|
7t2e14 |
⊢ ( 7 · 2 ) = ; 1 4 |
210 |
58 17 209
|
mulcomli |
⊢ ( 2 · 7 ) = ; 1 4 |
211 |
8 7 21 210 117
|
decaddi |
⊢ ( ( 2 · 7 ) + 2 ) = ; 1 6 |
212 |
58 37 153
|
mulcomli |
⊢ ( 3 · 7 ) = ; 2 1 |
213 |
55 21 2 196 8 21 211 212
|
decmul1c |
⊢ ( ; 2 3 · 7 ) = ; ; 1 6 1 |
214 |
213
|
oveq1i |
⊢ ( ( ; 2 3 · 7 ) + 0 ) = ( ; ; 1 6 1 + 0 ) |
215 |
195 8
|
deccl |
⊢ ; ; 1 6 1 ∈ ℕ0 |
216 |
215
|
nn0cni |
⊢ ; ; 1 6 1 ∈ ℂ |
217 |
216
|
addridi |
⊢ ( ; ; 1 6 1 + 0 ) = ; ; 1 6 1 |
218 |
214 217
|
eqtri |
⊢ ( ( ; 2 3 · 7 ) + 0 ) = ; ; 1 6 1 |
219 |
21 55 8 16 192 193 194 8 195 208 218
|
decma2c |
⊢ ( ( ; 2 3 · ; 2 7 ) + ; 1 0 ) = ; ; 6 3 1 |
220 |
|
10pos |
⊢ 0 < ; 1 0 |
221 |
|
1lt2 |
⊢ 1 < 2 |
222 |
8 21 16 2 220 221
|
decltc |
⊢ ; 1 0 < ; 2 3 |
223 |
189 190 191 219 222
|
ndvdsi |
⊢ ¬ ; 2 3 ∥ ; ; 6 3 1 |
224 |
5 12 15 20 48 50 70 104 137 168 188 223
|
prmlem2 |
⊢ ; ; 6 3 1 ∈ ℙ |