| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2polss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
2polss.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → 𝐾 ∈ HL ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝐾 ∈ HL ) |
| 5 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
| 6 |
5
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
| 7 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
| 8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 11 |
1 2
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 12 |
3 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 13 |
12
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 14 |
1 2
|
3polN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ⊥ ‘ 𝑌 ) ) |
| 15 |
14
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ⊥ ‘ 𝑌 ) ) |
| 16 |
1 2
|
3polN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 18 |
15 17
|
sseq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 19 |
13 18
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 20 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝐾 ∈ HL ) |
| 21 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
| 22 |
21
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 25 |
1 2
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 26 |
20 23 24 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 27 |
26
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 28 |
19 27
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |