Metamath Proof Explorer


Theorem 2sqn0

Description: If the sum of two squares is prime, none of the original number is zero. (Contributed by Thierry Arnoux, 4-Feb-2020)

Ref Expression
Hypotheses 2sqcoprm.1 ( 𝜑𝑃 ∈ ℙ )
2sqcoprm.2 ( 𝜑𝐴 ∈ ℤ )
2sqcoprm.3 ( 𝜑𝐵 ∈ ℤ )
2sqcoprm.4 ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 )
Assertion 2sqn0 ( 𝜑𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 2sqcoprm.1 ( 𝜑𝑃 ∈ ℙ )
2 2sqcoprm.2 ( 𝜑𝐴 ∈ ℤ )
3 2sqcoprm.3 ( 𝜑𝐵 ∈ ℤ )
4 2sqcoprm.4 ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 )
5 4 1 eqeltrd ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ )
6 5 adantr ( ( 𝜑𝐴 = 0 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ )
7 sq0i ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 0 )
8 7 oveq1d ( 𝐴 = 0 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 0 + ( 𝐵 ↑ 2 ) ) )
9 3 zcnd ( 𝜑𝐵 ∈ ℂ )
10 9 sqcld ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ )
11 10 addid2d ( 𝜑 → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) )
12 8 11 sylan9eqr ( ( 𝜑𝐴 = 0 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) )
13 sqnprm ( 𝐵 ∈ ℤ → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ )
14 3 13 syl ( 𝜑 → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ )
15 14 adantr ( ( 𝜑𝐴 = 0 ) → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ )
16 12 15 eqneltrd ( ( 𝜑𝐴 = 0 ) → ¬ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ )
17 6 16 pm2.65da ( 𝜑 → ¬ 𝐴 = 0 )
18 17 neqned ( 𝜑𝐴 ≠ 0 )