| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqcoprm.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 2 |
|
2sqcoprm.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 3 |
|
2sqcoprm.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 4 |
|
2sqcoprm.4 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) |
| 5 |
4 1
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ ) |
| 7 |
|
sq0i |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 0 ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 0 + ( 𝐵 ↑ 2 ) ) ) |
| 9 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 |
9
|
sqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 11 |
10
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 12 |
8 11
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
| 13 |
|
sqnprm |
⊢ ( 𝐵 ∈ ℤ → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ¬ ( 𝐵 ↑ 2 ) ∈ ℙ ) |
| 16 |
12 15
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ¬ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℙ ) |
| 17 |
6 16
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
| 18 |
17
|
neqned |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |