| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreult.1 | ⊢ ( 𝜑  ↔  ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 2 |  | 2sqreultlem | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 3 | 1 | bicomi | ⊢ ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  𝜑 ) | 
						
							| 4 | 3 | reubii | ⊢ ( ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ∃! 𝑏  ∈  ℕ0 𝜑 ) | 
						
							| 5 | 4 | reubii | ⊢ ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 𝜑 ) | 
						
							| 6 | 1 | 2sqreulem4 | ⊢ ∀ 𝑎  ∈  ℕ0 ∃* 𝑏  ∈  ℕ0 𝜑 | 
						
							| 7 |  | 2reu1 | ⊢ ( ∀ 𝑎  ∈  ℕ0 ∃* 𝑏  ∈  ℕ0 𝜑  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 𝜑  ↔  ( ∃! 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝜑  ∧  ∃! 𝑏  ∈  ℕ0 ∃ 𝑎  ∈  ℕ0 𝜑 ) ) ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 𝜑  ↔  ( ∃! 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝜑  ∧  ∃! 𝑏  ∈  ℕ0 ∃ 𝑎  ∈  ℕ0 𝜑 ) ) ) | 
						
							| 9 | 5 8 | bitrid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ( ∃! 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝜑  ∧  ∃! 𝑏  ∈  ℕ0 ∃ 𝑎  ∈  ℕ0 𝜑 ) ) ) | 
						
							| 10 | 2 9 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ∃! 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝜑  ∧  ∃! 𝑏  ∈  ℕ0 ∃ 𝑎  ∈  ℕ0 𝜑 ) ) |