| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreulem1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  ≤  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑏  =  𝑎  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 5 |  | nn0cn | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℂ ) | 
						
							| 6 | 5 | sqcld | ⊢ ( 𝑎  ∈  ℕ0  →  ( 𝑎 ↑ 2 )  ∈  ℂ ) | 
						
							| 7 |  | 2times | ⊢ ( ( 𝑎 ↑ 2 )  ∈  ℂ  →  ( 2  ·  ( 𝑎 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑎 ↑ 2 )  ∈  ℂ  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 2  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 2  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 2  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 11 | 10 | ad2antrl | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 2  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 12 | 4 11 | eqtrd | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 2  ·  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  ↔  ( 2  ·  ( 𝑎 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( 𝑃  mod  4 )  =  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( ( 𝑃  mod  4 )  =  1  ↔  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1 ) ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  ↔  ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ ) ) | 
						
							| 17 | 15 16 | anbi12d | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( ( ( 𝑃  mod  4 )  =  1  ∧  𝑃  ∈  ℙ )  ↔  ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  ∧  ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ ) ) ) | 
						
							| 18 |  | nn0z | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℤ ) | 
						
							| 19 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 20 |  | zexpcl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  2  ∈  ℕ0 )  →  ( 𝑎 ↑ 2 )  ∈  ℤ ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( 𝑎  ∈  ℕ0  →  ( 𝑎 ↑ 2 )  ∈  ℤ ) | 
						
							| 22 |  | 2mulprm | ⊢ ( ( 𝑎 ↑ 2 )  ∈  ℤ  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ  ↔  ( 𝑎 ↑ 2 )  =  1 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ  ↔  ( 𝑎 ↑ 2 )  =  1 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( 2  ·  ( 𝑎 ↑ 2 ) )  =  ( 2  ·  1 ) ) | 
						
							| 25 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 26 | 24 25 | eqtrdi | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( 2  ·  ( 𝑎 ↑ 2 ) )  =  2 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  ( 2  mod  4 ) ) | 
						
							| 28 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 29 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 30 |  | nnrp | ⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 31 | 29 30 | ax-mp | ⊢ 4  ∈  ℝ+ | 
						
							| 32 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 33 |  | 2lt4 | ⊢ 2  <  4 | 
						
							| 34 |  | modid | ⊢ ( ( ( 2  ∈  ℝ  ∧  4  ∈  ℝ+ )  ∧  ( 0  ≤  2  ∧  2  <  4 ) )  →  ( 2  mod  4 )  =  2 ) | 
						
							| 35 | 28 31 32 33 34 | mp4an | ⊢ ( 2  mod  4 )  =  2 | 
						
							| 36 | 27 35 | eqtrdi | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  2 ) | 
						
							| 37 | 36 | eqeq1d | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  ↔  2  =  1 ) ) | 
						
							| 38 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 39 |  | eqcom | ⊢ ( 2  =  1  ↔  1  =  2 ) | 
						
							| 40 |  | eqneqall | ⊢ ( 1  =  2  →  ( 1  ≠  2  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 41 | 40 | com12 | ⊢ ( 1  ≠  2  →  ( 1  =  2  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 42 | 39 41 | biimtrid | ⊢ ( 1  ≠  2  →  ( 2  =  1  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 43 | 38 42 | ax-mp | ⊢ ( 2  =  1  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) | 
						
							| 44 | 37 43 | biimtrdi | ⊢ ( ( 𝑎 ↑ 2 )  =  1  →  ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 45 | 23 44 | biimtrdi | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ  →  ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) | 
						
							| 46 | 45 | impcomd | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  ∧  ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ )  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 47 | 46 | com12 | ⊢ ( ( ( ( 2  ·  ( 𝑎 ↑ 2 ) )  mod  4 )  =  1  ∧  ( 2  ·  ( 𝑎 ↑ 2 ) )  ∈  ℙ )  →  ( 𝑎  ∈  ℕ0  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 48 | 17 47 | biimtrdi | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( ( ( 𝑃  mod  4 )  =  1  ∧  𝑃  ∈  ℙ )  →  ( 𝑎  ∈  ℕ0  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) | 
						
							| 49 | 48 | expd | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( ( 𝑃  mod  4 )  =  1  →  ( 𝑃  ∈  ℙ  →  ( 𝑎  ∈  ℕ0  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) ) | 
						
							| 50 | 49 | com34 | ⊢ ( 𝑃  =  ( 2  ·  ( 𝑎 ↑ 2 ) )  →  ( ( 𝑃  mod  4 )  =  1  →  ( 𝑎  ∈  ℕ0  →  ( 𝑃  ∈  ℙ  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) ) | 
						
							| 51 | 50 | eqcoms | ⊢ ( ( 2  ·  ( 𝑎 ↑ 2 ) )  =  𝑃  →  ( ( 𝑃  mod  4 )  =  1  →  ( 𝑎  ∈  ℕ0  →  ( 𝑃  ∈  ℙ  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) ) | 
						
							| 52 | 51 | com14 | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  mod  4 )  =  1  →  ( 𝑎  ∈  ℕ0  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  =  𝑃  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) ) ) | 
						
							| 53 | 52 | imp31 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  =  𝑃  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 54 | 53 | ad2antrl | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 2  ·  ( 𝑎 ↑ 2 ) )  =  𝑃  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 55 | 13 54 | sylbid | ⊢ ( ( 𝑏  =  𝑎  ∧  ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 56 | 55 | expimpd | ⊢ ( 𝑏  =  𝑎  →  ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 57 |  | 2a1 | ⊢ ( 𝑏  ≠  𝑎  →  ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) ) | 
						
							| 58 | 56 57 | pm2.61ine | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑎  ≤  𝑏  →  𝑏  ≠  𝑎 ) ) | 
						
							| 59 | 58 | pm4.71d | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ≤  𝑏  ∧  𝑏  ≠  𝑎 ) ) ) | 
						
							| 60 |  | nn0re | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℝ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  →  𝑎  ∈  ℝ ) | 
						
							| 62 |  | nn0re | ⊢ ( 𝑏  ∈  ℕ0  →  𝑏  ∈  ℝ ) | 
						
							| 63 |  | ltlen | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎  <  𝑏  ↔  ( 𝑎  ≤  𝑏  ∧  𝑏  ≠  𝑎 ) ) ) | 
						
							| 64 | 61 62 63 | syl2an | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑎  <  𝑏  ↔  ( 𝑎  ≤  𝑏  ∧  𝑏  ≠  𝑎 ) ) ) | 
						
							| 65 | 64 | bibi2d | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑎  ≤  𝑏  ↔  𝑎  <  𝑏 )  ↔  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ≤  𝑏  ∧  𝑏  ≠  𝑎 ) ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( ( 𝑎  ≤  𝑏  ↔  𝑎  <  𝑏 )  ↔  ( 𝑎  ≤  𝑏  ↔  ( 𝑎  ≤  𝑏  ∧  𝑏  ≠  𝑎 ) ) ) ) | 
						
							| 67 | 59 66 | mpbird | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑎  ≤  𝑏  ↔  𝑎  <  𝑏 ) ) | 
						
							| 68 | 67 | ex | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  →  ( 𝑎  ≤  𝑏  ↔  𝑎  <  𝑏 ) ) ) | 
						
							| 69 | 68 | pm5.32rd | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑎  ≤  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) ) | 
						
							| 70 | 69 | reubidva | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  𝑎  ∈  ℕ0 )  →  ( ∃! 𝑏  ∈  ℕ0 ( 𝑎  ≤  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) ) | 
						
							| 71 | 70 | reubidva | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  ≤  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) ) | 
						
							| 72 | 1 71 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) |