Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreultlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
1
|
ex |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 → ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
3 |
|
2reu2rex |
⊢ ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
4 |
|
elsni |
⊢ ( 𝑃 ∈ { 2 } → 𝑃 = 2 ) |
5 |
|
eqeq2 |
⊢ ( 𝑃 = 2 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑃 = 2 → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑃 = 2 ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) ) ) |
8 |
|
2sq2 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ↔ ( 𝑎 = 1 ∧ 𝑏 = 1 ) ) ) |
9 |
|
breq12 |
⊢ ( ( 𝑎 = 1 ∧ 𝑏 = 1 ) → ( 𝑎 < 𝑏 ↔ 1 < 1 ) ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
10
|
ltnri |
⊢ ¬ 1 < 1 |
12 |
11
|
pm2.21i |
⊢ ( 1 < 1 → ( 𝑃 mod 4 ) = 1 ) |
13 |
9 12
|
syl6bi |
⊢ ( ( 𝑎 = 1 ∧ 𝑏 = 1 ) → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) |
14 |
8 13
|
syl6bi |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 → ( 𝑎 < 𝑏 → ( 𝑃 mod 4 ) = 1 ) ) ) |
15 |
14
|
impcomd |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) → ( 𝑃 mod 4 ) = 1 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑃 = 2 ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 2 ) → ( 𝑃 mod 4 ) = 1 ) ) |
17 |
7 16
|
sylbid |
⊢ ( ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ∧ 𝑃 = 2 ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 = 2 → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) ) |
19 |
18
|
com23 |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) ) |
20 |
19
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) |
21 |
3 4 20
|
syl2imc |
⊢ ( 𝑃 ∈ { 2 } → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
22 |
21
|
a1d |
⊢ ( 𝑃 ∈ { 2 } → ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) ) |
23 |
|
eldif |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ { 2 } ) ) |
24 |
|
eldifsnneq |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 𝑃 = 2 ) |
25 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
26 |
|
id |
⊢ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) |
27 |
26
|
eqcomd |
⊢ ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 → 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
29 |
28
|
reximi |
⊢ ( ∃ 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
30 |
29
|
reximi |
⊢ ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
31 |
|
ssrexv |
⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
32 |
25 31
|
ax-mp |
⊢ ( ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
33 |
32
|
reximi |
⊢ ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
34 |
3 30 33
|
3syl |
⊢ ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
35 |
|
ssrexv |
⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
36 |
25 34 35
|
mpsyl |
⊢ ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
38 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
39 |
38
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → 𝑃 ∈ ℙ ) |
40 |
|
2sqb |
⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) ) |
42 |
37 41
|
mpbid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) |
43 |
42
|
ord |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( ¬ 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) |
44 |
43
|
ex |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( ¬ 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) ) |
45 |
24 44
|
mpid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
46 |
23 45
|
sylbir |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ { 2 } ) → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
47 |
46
|
expcom |
⊢ ( ¬ 𝑃 ∈ { 2 } → ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) ) |
48 |
22 47
|
pm2.61i |
⊢ ( 𝑃 ∈ ℙ → ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ( 𝑃 mod 4 ) = 1 ) ) |
49 |
2 48
|
impbid |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |