Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝑃 ≠ 2 ↔ ¬ 𝑃 = 2 ) |
2 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
3 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑃 ∈ ℤ ) |
4 |
|
simplrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 ∈ ℤ ) |
5 |
|
bezout |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) |
6 |
3 4 5
|
syl2anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) |
7 |
|
simplll |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
8 |
|
simpllr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) |
9 |
|
simplr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
10 |
|
simprll |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → 𝑎 ∈ ℤ ) |
11 |
|
simprlr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → 𝑏 ∈ ℤ ) |
12 |
|
simprr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) |
13 |
7 8 9 10 11 12
|
2sqblem |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) ) ) → ( 𝑃 mod 4 ) = 1 ) |
14 |
13
|
expr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) → ( 𝑃 mod 4 ) = 1 ) ) |
15 |
14
|
rexlimdvva |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝑃 gcd 𝑦 ) = ( ( 𝑃 · 𝑎 ) + ( 𝑦 · 𝑏 ) ) → ( 𝑃 mod 4 ) = 1 ) ) |
16 |
6 15
|
mpd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( 𝑃 mod 4 ) = 1 ) |
17 |
16
|
ex |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( 𝑃 mod 4 ) = 1 ) ) |
18 |
17
|
rexlimdvva |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( 𝑃 mod 4 ) = 1 ) ) |
19 |
18
|
impancom |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( 𝑃 ≠ 2 → ( 𝑃 mod 4 ) = 1 ) ) |
20 |
1 19
|
syl5bir |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( ¬ 𝑃 = 2 → ( 𝑃 mod 4 ) = 1 ) ) |
21 |
20
|
orrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) |
22 |
|
1z |
⊢ 1 ∈ ℤ |
23 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 2 ) = ( 1 ↑ 2 ) ) |
24 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
25 |
23 24
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 2 ) = 1 ) |
26 |
25
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( 1 + ( 𝑦 ↑ 2 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑥 = 1 → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( 1 + ( 𝑦 ↑ 2 ) ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 ↑ 2 ) = ( 1 ↑ 2 ) ) |
29 |
28 24
|
eqtrdi |
⊢ ( 𝑦 = 1 → ( 𝑦 ↑ 2 ) = 1 ) |
30 |
29
|
oveq2d |
⊢ ( 𝑦 = 1 → ( 1 + ( 𝑦 ↑ 2 ) ) = ( 1 + 1 ) ) |
31 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
32 |
30 31
|
eqtrdi |
⊢ ( 𝑦 = 1 → ( 1 + ( 𝑦 ↑ 2 ) ) = 2 ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑦 = 1 → ( 𝑃 = ( 1 + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = 2 ) ) |
34 |
27 33
|
rspc2ev |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 = 2 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
35 |
22 22 34
|
mp3an12 |
⊢ ( 𝑃 = 2 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 = 2 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
37 |
|
2sq |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
38 |
36 37
|
jaodan |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
39 |
21 38
|
impbida |
⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( 𝑃 = 2 ∨ ( 𝑃 mod 4 ) = 1 ) ) ) |