| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|
| 2 |
|
prmz |
|
| 3 |
2
|
ad3antrrr |
|
| 4 |
|
simplrr |
|
| 5 |
|
bezout |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
|
simplll |
|
| 8 |
|
simpllr |
|
| 9 |
|
simplr |
|
| 10 |
|
simprll |
|
| 11 |
|
simprlr |
|
| 12 |
|
simprr |
|
| 13 |
7 8 9 10 11 12
|
2sqblem |
|
| 14 |
13
|
expr |
|
| 15 |
14
|
rexlimdvva |
|
| 16 |
6 15
|
mpd |
|
| 17 |
16
|
ex |
|
| 18 |
17
|
rexlimdvva |
|
| 19 |
18
|
impancom |
|
| 20 |
1 19
|
biimtrrid |
|
| 21 |
20
|
orrd |
|
| 22 |
|
1z |
|
| 23 |
|
oveq1 |
|
| 24 |
|
sq1 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
oveq1d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
|
oveq1 |
|
| 29 |
28 24
|
eqtrdi |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
1p1e2 |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
27 33
|
rspc2ev |
|
| 35 |
22 22 34
|
mp3an12 |
|
| 36 |
35
|
adantl |
|
| 37 |
|
2sq |
|
| 38 |
36 37
|
jaodan |
|
| 39 |
21 38
|
impbida |
|