| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0sqcl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
| 2 |
|
nn0sqcl |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ↑ 2 ) ∈ ℕ0 ) |
| 3 |
2
|
nn0red |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 4 |
1 3
|
anim12ci |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) ) |
| 6 |
|
nn0addge2 |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) → ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 8 |
|
breq2 |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ 2 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ 2 ) ) |
| 10 |
2
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℕ0 ) |
| 11 |
|
nn0le2is012 |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℕ0 ∧ ( 𝐵 ↑ 2 ) ≤ 2 ) → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) |
| 12 |
11
|
ex |
⊢ ( ( 𝐵 ↑ 2 ) ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( ( 𝐵 ↑ 2 ) = 0 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + 0 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( ( 𝐵 ↑ 2 ) = 0 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ) ) |
| 17 |
1
|
nn0cnd |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 18 |
17
|
addridd |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) + 0 ) = ( 𝐴 ↑ 2 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) + 0 ) = ( 𝐴 ↑ 2 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
| 21 |
1
|
nn0red |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 22 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 23 |
22
|
sqge0d |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 24 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 25 |
24
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 26 |
25
|
nn0red |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℝ ) |
| 27 |
|
0le2 |
⊢ 0 ≤ 2 |
| 28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 2 ) |
| 29 |
|
sqrt11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
| 30 |
21 23 26 28 29
|
syl22anc |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
| 31 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
| 32 |
22 31
|
sqrtsqd |
⊢ ( 𝐴 ∈ ℕ0 → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ 𝐴 = ( √ ‘ 2 ) ) ) |
| 34 |
|
sqrt2irr |
⊢ ( √ ‘ 2 ) ∉ ℚ |
| 35 |
|
df-nel |
⊢ ( ( √ ‘ 2 ) ∉ ℚ ↔ ¬ ( √ ‘ 2 ) ∈ ℚ ) |
| 36 |
|
id |
⊢ ( ( √ ‘ 2 ) = 𝐴 → ( √ ‘ 2 ) = 𝐴 ) |
| 37 |
36
|
eqcoms |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( √ ‘ 2 ) = 𝐴 ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
| 39 |
38
|
notbid |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ ) ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ ) ) |
| 41 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 42 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
| 43 |
41 42
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℚ ) |
| 44 |
43
|
pm2.24d |
⊢ ( 𝐴 ∈ ℕ0 → ( ¬ 𝐴 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ 𝐴 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 46 |
40 45
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 47 |
46
|
com12 |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 48 |
47
|
expd |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 49 |
35 48
|
sylbi |
⊢ ( ( √ ‘ 2 ) ∉ ℚ → ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 50 |
34 49
|
ax-mp |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 51 |
33 50
|
sylbid |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 52 |
30 51
|
sylbird |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 54 |
20 53
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 56 |
16 55
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 57 |
56
|
impancom |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 0 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 58 |
|
oveq2 |
⊢ ( ( 𝐵 ↑ 2 ) = 1 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( ( 𝐵 ↑ 2 ) = 1 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
| 60 |
|
2cnd |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℂ ) |
| 61 |
|
1cnd |
⊢ ( 𝐴 ∈ ℕ0 → 1 ∈ ℂ ) |
| 62 |
60 61 17
|
3jca |
⊢ ( 𝐴 ∈ ℕ0 → ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) ) |
| 64 |
|
subadd2 |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
| 65 |
63 64
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
| 66 |
65
|
bicomd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ) ) |
| 67 |
59 66
|
sylan9bbr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ) ) |
| 68 |
|
nn0sqeq1 |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ ( 𝐵 ↑ 2 ) = 1 ) → 𝐵 = 1 ) |
| 69 |
68
|
ex |
⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) = 1 → 𝐵 = 1 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) = 1 → 𝐵 = 1 ) ) |
| 71 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 72 |
71
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 2 − 1 ) = 1 ) |
| 73 |
72
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ 1 = ( 𝐴 ↑ 2 ) ) ) |
| 74 |
|
eqcom |
⊢ ( 1 = ( 𝐴 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) |
| 75 |
73 74
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
| 76 |
|
nn0sqeq1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐴 ↑ 2 ) = 1 ) → 𝐴 = 1 ) |
| 77 |
76
|
ex |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) = 1 → 𝐴 = 1 ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 1 → 𝐴 = 1 ) ) |
| 79 |
|
id |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) |
| 80 |
79
|
ex |
⊢ ( 𝐴 = 1 → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 81 |
78 80
|
syl6 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 1 → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 82 |
75 81
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 83 |
82
|
com23 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 = 1 → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 84 |
70 83
|
syld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) = 1 → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 86 |
67 85
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 87 |
86
|
impancom |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 88 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
| 89 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
| 90 |
88 89
|
sqrtsqd |
⊢ ( 𝐵 ∈ ℕ0 → ( √ ‘ ( 𝐵 ↑ 2 ) ) = 𝐵 ) |
| 91 |
90
|
eqcomd |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 = ( √ ‘ ( 𝐵 ↑ 2 ) ) ) |
| 92 |
91
|
eqeq1d |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) ↔ ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ) ) |
| 93 |
88
|
sqge0d |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ ( 𝐵 ↑ 2 ) ) |
| 94 |
|
2re |
⊢ 2 ∈ ℝ |
| 95 |
94
|
a1i |
⊢ ( 𝐵 ∈ ℕ0 → 2 ∈ ℝ ) |
| 96 |
27
|
a1i |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 2 ) |
| 97 |
|
sqrt11 |
⊢ ( ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
| 98 |
3 93 95 96 97
|
syl22anc |
⊢ ( 𝐵 ∈ ℕ0 → ( ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
| 99 |
92 98
|
bitrd |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
| 100 |
|
id |
⊢ ( ( √ ‘ 2 ) = 𝐵 → ( √ ‘ 2 ) = 𝐵 ) |
| 101 |
100
|
eqcoms |
⊢ ( 𝐵 = ( √ ‘ 2 ) → ( √ ‘ 2 ) = 𝐵 ) |
| 102 |
101
|
eleq1d |
⊢ ( 𝐵 = ( √ ‘ 2 ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐵 ∈ ℚ ) ) |
| 103 |
102
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐵 ∈ ℚ ) ) |
| 104 |
103
|
notbid |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ ) ) |
| 105 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
| 106 |
|
zq |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) |
| 107 |
105 106
|
syl |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℚ ) |
| 108 |
107
|
pm2.24d |
⊢ ( 𝐵 ∈ ℕ0 → ( ¬ 𝐵 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ 𝐵 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 110 |
104 109
|
sylbid |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 111 |
110
|
com12 |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 112 |
111
|
expd |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 113 |
35 112
|
sylbi |
⊢ ( ( √ ‘ 2 ) ∉ ℚ → ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
| 114 |
34 113
|
ax-mp |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 115 |
99 114
|
sylbird |
⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 116 |
115
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 117 |
57 87 116
|
3jaod |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 118 |
13 117
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 119 |
9 118
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 120 |
7 119
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) |
| 121 |
120
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
| 122 |
|
oveq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 123 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 124 |
122 123
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 1 ) |
| 125 |
|
oveq1 |
⊢ ( 𝐵 = 1 → ( 𝐵 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 126 |
125 123
|
eqtrdi |
⊢ ( 𝐵 = 1 → ( 𝐵 ↑ 2 ) = 1 ) |
| 127 |
124 126
|
oveqan12d |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 1 + 1 ) ) |
| 128 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 129 |
127 128
|
eqtrdi |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) |
| 130 |
121 129
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |