| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0sqcl |
|- ( A e. NN0 -> ( A ^ 2 ) e. NN0 ) |
| 2 |
|
nn0sqcl |
|- ( B e. NN0 -> ( B ^ 2 ) e. NN0 ) |
| 3 |
2
|
nn0red |
|- ( B e. NN0 -> ( B ^ 2 ) e. RR ) |
| 4 |
1 3
|
anim12ci |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B ^ 2 ) e. RR /\ ( A ^ 2 ) e. NN0 ) ) |
| 5 |
4
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) e. RR /\ ( A ^ 2 ) e. NN0 ) ) |
| 6 |
|
nn0addge2 |
|- ( ( ( B ^ 2 ) e. RR /\ ( A ^ 2 ) e. NN0 ) -> ( B ^ 2 ) <_ ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 7 |
5 6
|
syl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( B ^ 2 ) <_ ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 8 |
|
breq2 |
|- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 -> ( ( B ^ 2 ) <_ ( ( A ^ 2 ) + ( B ^ 2 ) ) <-> ( B ^ 2 ) <_ 2 ) ) |
| 9 |
8
|
adantl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) <_ ( ( A ^ 2 ) + ( B ^ 2 ) ) <-> ( B ^ 2 ) <_ 2 ) ) |
| 10 |
2
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( B ^ 2 ) e. NN0 ) |
| 11 |
|
nn0le2is012 |
|- ( ( ( B ^ 2 ) e. NN0 /\ ( B ^ 2 ) <_ 2 ) -> ( ( B ^ 2 ) = 0 \/ ( B ^ 2 ) = 1 \/ ( B ^ 2 ) = 2 ) ) |
| 12 |
11
|
ex |
|- ( ( B ^ 2 ) e. NN0 -> ( ( B ^ 2 ) <_ 2 -> ( ( B ^ 2 ) = 0 \/ ( B ^ 2 ) = 1 \/ ( B ^ 2 ) = 2 ) ) ) |
| 13 |
10 12
|
syl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) <_ 2 -> ( ( B ^ 2 ) = 0 \/ ( B ^ 2 ) = 1 \/ ( B ^ 2 ) = 2 ) ) ) |
| 14 |
|
oveq2 |
|- ( ( B ^ 2 ) = 0 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + 0 ) ) |
| 15 |
14
|
eqeq1d |
|- ( ( B ^ 2 ) = 0 -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 <-> ( ( A ^ 2 ) + 0 ) = 2 ) ) |
| 16 |
15
|
adantl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 <-> ( ( A ^ 2 ) + 0 ) = 2 ) ) |
| 17 |
1
|
nn0cnd |
|- ( A e. NN0 -> ( A ^ 2 ) e. CC ) |
| 18 |
17
|
addridd |
|- ( A e. NN0 -> ( ( A ^ 2 ) + 0 ) = ( A ^ 2 ) ) |
| 19 |
18
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) + 0 ) = ( A ^ 2 ) ) |
| 20 |
19
|
eqeq1d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( ( A ^ 2 ) + 0 ) = 2 <-> ( A ^ 2 ) = 2 ) ) |
| 21 |
1
|
nn0red |
|- ( A e. NN0 -> ( A ^ 2 ) e. RR ) |
| 22 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 23 |
22
|
sqge0d |
|- ( A e. NN0 -> 0 <_ ( A ^ 2 ) ) |
| 24 |
|
2nn0 |
|- 2 e. NN0 |
| 25 |
24
|
a1i |
|- ( A e. NN0 -> 2 e. NN0 ) |
| 26 |
25
|
nn0red |
|- ( A e. NN0 -> 2 e. RR ) |
| 27 |
|
0le2 |
|- 0 <_ 2 |
| 28 |
27
|
a1i |
|- ( A e. NN0 -> 0 <_ 2 ) |
| 29 |
|
sqrt11 |
|- ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( 2 e. RR /\ 0 <_ 2 ) ) -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 2 ) <-> ( A ^ 2 ) = 2 ) ) |
| 30 |
21 23 26 28 29
|
syl22anc |
|- ( A e. NN0 -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 2 ) <-> ( A ^ 2 ) = 2 ) ) |
| 31 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 32 |
22 31
|
sqrtsqd |
|- ( A e. NN0 -> ( sqrt ` ( A ^ 2 ) ) = A ) |
| 33 |
32
|
eqeq1d |
|- ( A e. NN0 -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 2 ) <-> A = ( sqrt ` 2 ) ) ) |
| 34 |
|
sqrt2irr |
|- ( sqrt ` 2 ) e/ QQ |
| 35 |
|
df-nel |
|- ( ( sqrt ` 2 ) e/ QQ <-> -. ( sqrt ` 2 ) e. QQ ) |
| 36 |
|
id |
|- ( ( sqrt ` 2 ) = A -> ( sqrt ` 2 ) = A ) |
| 37 |
36
|
eqcoms |
|- ( A = ( sqrt ` 2 ) -> ( sqrt ` 2 ) = A ) |
| 38 |
37
|
eleq1d |
|- ( A = ( sqrt ` 2 ) -> ( ( sqrt ` 2 ) e. QQ <-> A e. QQ ) ) |
| 39 |
38
|
notbid |
|- ( A = ( sqrt ` 2 ) -> ( -. ( sqrt ` 2 ) e. QQ <-> -. A e. QQ ) ) |
| 40 |
39
|
adantl |
|- ( ( A e. NN0 /\ A = ( sqrt ` 2 ) ) -> ( -. ( sqrt ` 2 ) e. QQ <-> -. A e. QQ ) ) |
| 41 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 42 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
| 43 |
41 42
|
syl |
|- ( A e. NN0 -> A e. QQ ) |
| 44 |
43
|
pm2.24d |
|- ( A e. NN0 -> ( -. A e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 45 |
44
|
adantr |
|- ( ( A e. NN0 /\ A = ( sqrt ` 2 ) ) -> ( -. A e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 46 |
40 45
|
sylbid |
|- ( ( A e. NN0 /\ A = ( sqrt ` 2 ) ) -> ( -. ( sqrt ` 2 ) e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 47 |
46
|
com12 |
|- ( -. ( sqrt ` 2 ) e. QQ -> ( ( A e. NN0 /\ A = ( sqrt ` 2 ) ) -> ( A = 1 /\ B = 1 ) ) ) |
| 48 |
47
|
expd |
|- ( -. ( sqrt ` 2 ) e. QQ -> ( A e. NN0 -> ( A = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 49 |
35 48
|
sylbi |
|- ( ( sqrt ` 2 ) e/ QQ -> ( A e. NN0 -> ( A = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 50 |
34 49
|
ax-mp |
|- ( A e. NN0 -> ( A = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) |
| 51 |
33 50
|
sylbid |
|- ( A e. NN0 -> ( ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) |
| 52 |
30 51
|
sylbird |
|- ( A e. NN0 -> ( ( A ^ 2 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 53 |
52
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 54 |
20 53
|
sylbid |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( ( A ^ 2 ) + 0 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 0 ) -> ( ( ( A ^ 2 ) + 0 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 56 |
16 55
|
sylbid |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 57 |
56
|
impancom |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) = 0 -> ( A = 1 /\ B = 1 ) ) ) |
| 58 |
|
oveq2 |
|- ( ( B ^ 2 ) = 1 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( A ^ 2 ) + 1 ) ) |
| 59 |
58
|
eqeq1d |
|- ( ( B ^ 2 ) = 1 -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 <-> ( ( A ^ 2 ) + 1 ) = 2 ) ) |
| 60 |
|
2cnd |
|- ( A e. NN0 -> 2 e. CC ) |
| 61 |
|
1cnd |
|- ( A e. NN0 -> 1 e. CC ) |
| 62 |
60 61 17
|
3jca |
|- ( A e. NN0 -> ( 2 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) ) |
| 63 |
62
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( 2 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) ) |
| 64 |
|
subadd2 |
|- ( ( 2 e. CC /\ 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( ( 2 - 1 ) = ( A ^ 2 ) <-> ( ( A ^ 2 ) + 1 ) = 2 ) ) |
| 65 |
63 64
|
syl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( 2 - 1 ) = ( A ^ 2 ) <-> ( ( A ^ 2 ) + 1 ) = 2 ) ) |
| 66 |
65
|
bicomd |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( ( A ^ 2 ) + 1 ) = 2 <-> ( 2 - 1 ) = ( A ^ 2 ) ) ) |
| 67 |
59 66
|
sylan9bbr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 1 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 <-> ( 2 - 1 ) = ( A ^ 2 ) ) ) |
| 68 |
|
nn0sqeq1 |
|- ( ( B e. NN0 /\ ( B ^ 2 ) = 1 ) -> B = 1 ) |
| 69 |
68
|
ex |
|- ( B e. NN0 -> ( ( B ^ 2 ) = 1 -> B = 1 ) ) |
| 70 |
69
|
adantl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B ^ 2 ) = 1 -> B = 1 ) ) |
| 71 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 72 |
71
|
a1i |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( 2 - 1 ) = 1 ) |
| 73 |
72
|
eqeq1d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( 2 - 1 ) = ( A ^ 2 ) <-> 1 = ( A ^ 2 ) ) ) |
| 74 |
|
eqcom |
|- ( 1 = ( A ^ 2 ) <-> ( A ^ 2 ) = 1 ) |
| 75 |
73 74
|
bitrdi |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( 2 - 1 ) = ( A ^ 2 ) <-> ( A ^ 2 ) = 1 ) ) |
| 76 |
|
nn0sqeq1 |
|- ( ( A e. NN0 /\ ( A ^ 2 ) = 1 ) -> A = 1 ) |
| 77 |
76
|
ex |
|- ( A e. NN0 -> ( ( A ^ 2 ) = 1 -> A = 1 ) ) |
| 78 |
77
|
adantr |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) = 1 -> A = 1 ) ) |
| 79 |
|
id |
|- ( ( A = 1 /\ B = 1 ) -> ( A = 1 /\ B = 1 ) ) |
| 80 |
79
|
ex |
|- ( A = 1 -> ( B = 1 -> ( A = 1 /\ B = 1 ) ) ) |
| 81 |
78 80
|
syl6 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A ^ 2 ) = 1 -> ( B = 1 -> ( A = 1 /\ B = 1 ) ) ) ) |
| 82 |
75 81
|
sylbid |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( 2 - 1 ) = ( A ^ 2 ) -> ( B = 1 -> ( A = 1 /\ B = 1 ) ) ) ) |
| 83 |
82
|
com23 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( B = 1 -> ( ( 2 - 1 ) = ( A ^ 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 84 |
70 83
|
syld |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( B ^ 2 ) = 1 -> ( ( 2 - 1 ) = ( A ^ 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 85 |
84
|
imp |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 1 ) -> ( ( 2 - 1 ) = ( A ^ 2 ) -> ( A = 1 /\ B = 1 ) ) ) |
| 86 |
67 85
|
sylbid |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( B ^ 2 ) = 1 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 87 |
86
|
impancom |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) = 1 -> ( A = 1 /\ B = 1 ) ) ) |
| 88 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 89 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
| 90 |
88 89
|
sqrtsqd |
|- ( B e. NN0 -> ( sqrt ` ( B ^ 2 ) ) = B ) |
| 91 |
90
|
eqcomd |
|- ( B e. NN0 -> B = ( sqrt ` ( B ^ 2 ) ) ) |
| 92 |
91
|
eqeq1d |
|- ( B e. NN0 -> ( B = ( sqrt ` 2 ) <-> ( sqrt ` ( B ^ 2 ) ) = ( sqrt ` 2 ) ) ) |
| 93 |
88
|
sqge0d |
|- ( B e. NN0 -> 0 <_ ( B ^ 2 ) ) |
| 94 |
|
2re |
|- 2 e. RR |
| 95 |
94
|
a1i |
|- ( B e. NN0 -> 2 e. RR ) |
| 96 |
27
|
a1i |
|- ( B e. NN0 -> 0 <_ 2 ) |
| 97 |
|
sqrt11 |
|- ( ( ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) /\ ( 2 e. RR /\ 0 <_ 2 ) ) -> ( ( sqrt ` ( B ^ 2 ) ) = ( sqrt ` 2 ) <-> ( B ^ 2 ) = 2 ) ) |
| 98 |
3 93 95 96 97
|
syl22anc |
|- ( B e. NN0 -> ( ( sqrt ` ( B ^ 2 ) ) = ( sqrt ` 2 ) <-> ( B ^ 2 ) = 2 ) ) |
| 99 |
92 98
|
bitrd |
|- ( B e. NN0 -> ( B = ( sqrt ` 2 ) <-> ( B ^ 2 ) = 2 ) ) |
| 100 |
|
id |
|- ( ( sqrt ` 2 ) = B -> ( sqrt ` 2 ) = B ) |
| 101 |
100
|
eqcoms |
|- ( B = ( sqrt ` 2 ) -> ( sqrt ` 2 ) = B ) |
| 102 |
101
|
eleq1d |
|- ( B = ( sqrt ` 2 ) -> ( ( sqrt ` 2 ) e. QQ <-> B e. QQ ) ) |
| 103 |
102
|
adantl |
|- ( ( B e. NN0 /\ B = ( sqrt ` 2 ) ) -> ( ( sqrt ` 2 ) e. QQ <-> B e. QQ ) ) |
| 104 |
103
|
notbid |
|- ( ( B e. NN0 /\ B = ( sqrt ` 2 ) ) -> ( -. ( sqrt ` 2 ) e. QQ <-> -. B e. QQ ) ) |
| 105 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
| 106 |
|
zq |
|- ( B e. ZZ -> B e. QQ ) |
| 107 |
105 106
|
syl |
|- ( B e. NN0 -> B e. QQ ) |
| 108 |
107
|
pm2.24d |
|- ( B e. NN0 -> ( -. B e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 109 |
108
|
adantr |
|- ( ( B e. NN0 /\ B = ( sqrt ` 2 ) ) -> ( -. B e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 110 |
104 109
|
sylbid |
|- ( ( B e. NN0 /\ B = ( sqrt ` 2 ) ) -> ( -. ( sqrt ` 2 ) e. QQ -> ( A = 1 /\ B = 1 ) ) ) |
| 111 |
110
|
com12 |
|- ( -. ( sqrt ` 2 ) e. QQ -> ( ( B e. NN0 /\ B = ( sqrt ` 2 ) ) -> ( A = 1 /\ B = 1 ) ) ) |
| 112 |
111
|
expd |
|- ( -. ( sqrt ` 2 ) e. QQ -> ( B e. NN0 -> ( B = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 113 |
35 112
|
sylbi |
|- ( ( sqrt ` 2 ) e/ QQ -> ( B e. NN0 -> ( B = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) ) |
| 114 |
34 113
|
ax-mp |
|- ( B e. NN0 -> ( B = ( sqrt ` 2 ) -> ( A = 1 /\ B = 1 ) ) ) |
| 115 |
99 114
|
sylbird |
|- ( B e. NN0 -> ( ( B ^ 2 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 116 |
115
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 117 |
57 87 116
|
3jaod |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( ( B ^ 2 ) = 0 \/ ( B ^ 2 ) = 1 \/ ( B ^ 2 ) = 2 ) -> ( A = 1 /\ B = 1 ) ) ) |
| 118 |
13 117
|
syld |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) <_ 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 119 |
9 118
|
sylbid |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( ( B ^ 2 ) <_ ( ( A ^ 2 ) + ( B ^ 2 ) ) -> ( A = 1 /\ B = 1 ) ) ) |
| 120 |
7 119
|
mpd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) -> ( A = 1 /\ B = 1 ) ) |
| 121 |
120
|
ex |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 -> ( A = 1 /\ B = 1 ) ) ) |
| 122 |
|
oveq1 |
|- ( A = 1 -> ( A ^ 2 ) = ( 1 ^ 2 ) ) |
| 123 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 124 |
122 123
|
eqtrdi |
|- ( A = 1 -> ( A ^ 2 ) = 1 ) |
| 125 |
|
oveq1 |
|- ( B = 1 -> ( B ^ 2 ) = ( 1 ^ 2 ) ) |
| 126 |
125 123
|
eqtrdi |
|- ( B = 1 -> ( B ^ 2 ) = 1 ) |
| 127 |
124 126
|
oveqan12d |
|- ( ( A = 1 /\ B = 1 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 1 + 1 ) ) |
| 128 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 129 |
127 128
|
eqtrdi |
|- ( ( A = 1 /\ B = 1 ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 ) |
| 130 |
121 129
|
impbid1 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 2 <-> ( A = 1 /\ B = 1 ) ) ) |