| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreultlem |  |-  ( ( P e. Prime /\ ( P mod 4 ) = 1 ) -> E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) | 
						
							| 2 | 1 | ex |  |-  ( P e. Prime -> ( ( P mod 4 ) = 1 -> E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) | 
						
							| 3 |  | 2reu2rex |  |-  ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN0 E. b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) | 
						
							| 4 |  | elsni |  |-  ( P e. { 2 } -> P = 2 ) | 
						
							| 5 |  | eqeq2 |  |-  ( P = 2 -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P <-> ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) ) | 
						
							| 6 | 5 | anbi2d |  |-  ( P = 2 -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( a e. NN0 /\ b e. NN0 ) /\ P = 2 ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) <-> ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) ) ) | 
						
							| 8 |  | 2sq2 |  |-  ( ( a e. NN0 /\ b e. NN0 ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 <-> ( a = 1 /\ b = 1 ) ) ) | 
						
							| 9 |  | breq12 |  |-  ( ( a = 1 /\ b = 1 ) -> ( a < b <-> 1 < 1 ) ) | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 | 10 | ltnri |  |-  -. 1 < 1 | 
						
							| 12 | 11 | pm2.21i |  |-  ( 1 < 1 -> ( P mod 4 ) = 1 ) | 
						
							| 13 | 9 12 | biimtrdi |  |-  ( ( a = 1 /\ b = 1 ) -> ( a < b -> ( P mod 4 ) = 1 ) ) | 
						
							| 14 | 8 13 | biimtrdi |  |-  ( ( a e. NN0 /\ b e. NN0 ) -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 -> ( a < b -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 15 | 14 | impcomd |  |-  ( ( a e. NN0 /\ b e. NN0 ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( a e. NN0 /\ b e. NN0 ) /\ P = 2 ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = 2 ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 17 | 7 16 | sylbid |  |-  ( ( ( a e. NN0 /\ b e. NN0 ) /\ P = 2 ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( a e. NN0 /\ b e. NN0 ) -> ( P = 2 -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 19 | 18 | com23 |  |-  ( ( a e. NN0 /\ b e. NN0 ) -> ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P = 2 -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 20 | 19 | rexlimivv |  |-  ( E. a e. NN0 E. b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P = 2 -> ( P mod 4 ) = 1 ) ) | 
						
							| 21 | 3 4 20 | syl2imc |  |-  ( P e. { 2 } -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 22 | 21 | a1d |  |-  ( P e. { 2 } -> ( P e. Prime -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 23 |  | eldif |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ -. P e. { 2 } ) ) | 
						
							| 24 |  | eldifsnneq |  |-  ( P e. ( Prime \ { 2 } ) -> -. P = 2 ) | 
						
							| 25 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 26 |  | id |  |-  ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = P -> P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 29 | 28 | reximi |  |-  ( E. b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. b e. NN0 P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 30 | 29 | reximi |  |-  ( E. a e. NN0 E. b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN0 E. b e. NN0 P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 31 |  | ssrexv |  |-  ( NN0 C_ ZZ -> ( E. b e. NN0 P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) ) | 
						
							| 32 | 25 31 | ax-mp |  |-  ( E. b e. NN0 P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 33 | 32 | reximi |  |-  ( E. a e. NN0 E. b e. NN0 P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. a e. NN0 E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 34 | 3 30 33 | 3syl |  |-  ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. NN0 E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 35 |  | ssrexv |  |-  ( NN0 C_ ZZ -> ( E. a e. NN0 E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) ) | 
						
							| 36 | 25 34 35 | mpsyl |  |-  ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 38 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 39 | 38 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> P e. Prime ) | 
						
							| 40 |  | 2sqb |  |-  ( P e. Prime -> ( E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( E. a e. ZZ E. b e. ZZ P = ( ( a ^ 2 ) + ( b ^ 2 ) ) <-> ( P = 2 \/ ( P mod 4 ) = 1 ) ) ) | 
						
							| 42 | 37 41 | mpbid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( P = 2 \/ ( P mod 4 ) = 1 ) ) | 
						
							| 43 | 42 | ord |  |-  ( ( P e. ( Prime \ { 2 } ) /\ E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) | 
						
							| 44 | 43 | ex |  |-  ( P e. ( Prime \ { 2 } ) -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( -. P = 2 -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 45 | 24 44 | mpid |  |-  ( P e. ( Prime \ { 2 } ) -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 46 | 23 45 | sylbir |  |-  ( ( P e. Prime /\ -. P e. { 2 } ) -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 47 | 46 | expcom |  |-  ( -. P e. { 2 } -> ( P e. Prime -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) ) | 
						
							| 48 | 22 47 | pm2.61i |  |-  ( P e. Prime -> ( E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) -> ( P mod 4 ) = 1 ) ) | 
						
							| 49 | 2 48 | impbid |  |-  ( P e. Prime -> ( ( P mod 4 ) = 1 <-> E! a e. NN0 E! b e. NN0 ( a < b /\ ( ( a ^ 2 ) + ( b ^ 2 ) ) = P ) ) ) |