| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 |
| 2 |
|
3wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 |
| 3 |
|
3wlkd.s |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) |
| 4 |
|
3wlkd.n |
⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) |
| 5 |
|
3wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 6 |
1 2 3
|
3wlkdlem3 |
⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 7 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝐴 , 𝐵 } ) |
| 8 |
7
|
sseq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 10 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
| 11 |
10
|
ad2ant2lr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
| 12 |
11
|
sseq1d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 13 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { 𝐶 , 𝐷 } ) |
| 14 |
13
|
sseq1d |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 16 |
9 12 15
|
3anbi123d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 17 |
5 16
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 18 |
6 17
|
mpd |
⊢ ( 𝜑 → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 19 |
|
fvex |
⊢ ( 𝑃 ‘ 0 ) ∈ V |
| 20 |
|
fvex |
⊢ ( 𝑃 ‘ 1 ) ∈ V |
| 21 |
19 20
|
prss |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 22 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐽 ) ) → ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 23 |
21 22
|
sylbir |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) → ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 24 |
|
fvex |
⊢ ( 𝑃 ‘ 2 ) ∈ V |
| 25 |
20 24
|
prss |
⊢ ( ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐾 ) ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
| 26 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐾 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ) |
| 27 |
25 26
|
sylbir |
⊢ ( { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) → ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ) |
| 28 |
|
fvex |
⊢ ( 𝑃 ‘ 3 ) ∈ V |
| 29 |
24 28
|
prss |
⊢ ( ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ∧ ( 𝑃 ‘ 3 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) |
| 30 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ∧ ( 𝑃 ‘ 3 ) ∈ ( 𝐼 ‘ 𝐿 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) |
| 31 |
29 30
|
sylbir |
⊢ ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) → ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) |
| 32 |
23 27 31
|
3anim123i |
⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ 𝐿 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
| 33 |
18 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
| 34 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 0 ) = 𝐴 → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ↔ 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 37 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 1 ) = 𝐵 → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ↔ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ) ) |
| 40 |
|
eleq1 |
⊢ ( ( 𝑃 ‘ 2 ) = 𝐶 → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ↔ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |
| 43 |
36 39 42
|
3anbi123d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 44 |
43
|
bicomd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 45 |
6 44
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ↔ ( ( 𝑃 ‘ 0 ) ∈ ( 𝐼 ‘ 𝐽 ) ∧ ( 𝑃 ‘ 1 ) ∈ ( 𝐼 ‘ 𝐾 ) ∧ ( 𝑃 ‘ 2 ) ∈ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 46 |
33 45
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝐵 ∈ ( 𝐼 ‘ 𝐾 ) ∧ 𝐶 ∈ ( 𝐼 ‘ 𝐿 ) ) ) |