Metamath Proof Explorer


Theorem 4atexlemswapqr

Description: Lemma for 4atexlem7 . Swap Q and R , so that theorems involving C can be reused for D . Note that U must be expanded because it involves Q . (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
4thatlemslps.l = ( le ‘ 𝐾 )
4thatlemslps.j = ( join ‘ 𝐾 )
4thatlemslps.a 𝐴 = ( Atoms ‘ 𝐾 )
4thatlemsw.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion 4atexlemswapqr ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑅 ∧ ¬ 𝑆 ( 𝑃 𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 4thatlem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) )
2 4thatlemslps.l = ( le ‘ 𝐾 )
3 4thatlemslps.j = ( join ‘ 𝐾 )
4 4thatlemslps.a 𝐴 = ( Atoms ‘ 𝐾 )
5 4thatlemsw.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
6 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 1 6 sylbi ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 1 4atexlempw ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
9 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
10 3simpa ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
11 9 10 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
12 1 11 sylbi ( 𝜑 → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
13 7 8 12 3jca ( 𝜑 → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) )
14 1 4atexlems ( 𝜑𝑆𝐴 )
15 1 4atexlemq ( 𝜑𝑄𝐴 )
16 simp13r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑄 𝑊 )
17 1 16 sylbi ( 𝜑 → ¬ 𝑄 𝑊 )
18 1 4atexlemkc ( 𝜑𝐾 ∈ CvLat )
19 1 4atexlemp ( 𝜑𝑃𝐴 )
20 12 simpld ( 𝜑𝑅𝐴 )
21 1 4atexlempnq ( 𝜑𝑃𝑄 )
22 simp223 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑇𝐴 ∧ ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
23 1 22 sylbi ( 𝜑 → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
24 4 3 cvlsupr7 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) )
25 18 19 15 20 21 23 24 syl132anc ( 𝜑 → ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) )
26 15 17 25 3jca ( 𝜑 → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) )
27 1 4atexlemt ( 𝜑𝑇𝐴 )
28 4 3 cvlsupr8 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑅 ) )
29 18 19 15 20 21 23 28 syl132anc ( 𝜑 → ( 𝑃 𝑄 ) = ( 𝑃 𝑅 ) )
30 29 oveq1d ( 𝜑 → ( ( 𝑃 𝑄 ) 𝑊 ) = ( ( 𝑃 𝑅 ) 𝑊 ) )
31 5 30 syl5eq ( 𝜑𝑈 = ( ( 𝑃 𝑅 ) 𝑊 ) )
32 31 oveq1d ( 𝜑 → ( 𝑈 𝑇 ) = ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) )
33 1 4atexlemutvt ( 𝜑 → ( 𝑈 𝑇 ) = ( 𝑉 𝑇 ) )
34 32 33 eqtr3d ( 𝜑 → ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) = ( 𝑉 𝑇 ) )
35 27 34 jca ( 𝜑 → ( 𝑇𝐴 ∧ ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) = ( 𝑉 𝑇 ) ) )
36 14 26 35 3jca ( 𝜑 → ( 𝑆𝐴 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) = ( 𝑉 𝑇 ) ) ) )
37 4 3 cvlsupr5 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅𝑃 )
38 37 necomd ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃𝑅 )
39 18 19 15 20 21 23 38 syl132anc ( 𝜑𝑃𝑅 )
40 1 4atexlemnslpq ( 𝜑 → ¬ 𝑆 ( 𝑃 𝑄 ) )
41 29 eqcomd ( 𝜑 → ( 𝑃 𝑅 ) = ( 𝑃 𝑄 ) )
42 41 breq2d ( 𝜑 → ( 𝑆 ( 𝑃 𝑅 ) ↔ 𝑆 ( 𝑃 𝑄 ) ) )
43 40 42 mtbird ( 𝜑 → ¬ 𝑆 ( 𝑃 𝑅 ) )
44 39 43 jca ( 𝜑 → ( 𝑃𝑅 ∧ ¬ 𝑆 ( 𝑃 𝑅 ) ) )
45 13 36 44 3jca ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) ∧ ( 𝑇𝐴 ∧ ( ( ( 𝑃 𝑅 ) 𝑊 ) 𝑇 ) = ( 𝑉 𝑇 ) ) ) ∧ ( 𝑃𝑅 ∧ ¬ 𝑆 ( 𝑃 𝑅 ) ) ) )