| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvn0b.b |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 2 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) |
| 6 |
1 3 4 5
|
abvtrivg |
⊢ ( 𝑅 ∈ Domn → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ if ( 𝑥 = ( 0g ‘ 𝑅 ) , 0 , 1 ) ) ∈ 𝐴 ) |
| 7 |
6
|
ne0d |
⊢ ( 𝑅 ∈ Domn → 𝐴 ≠ ∅ ) |
| 8 |
2 7
|
jca |
⊢ ( 𝑅 ∈ Domn → ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) ) |
| 9 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 10 |
|
neanior |
⊢ ( ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ↔ ¬ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
| 11 |
|
an4 |
⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) ↔ ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
1 3 4 12
|
abvdom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 14 |
13
|
3expib |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ≠ ( 0g ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 15 |
11 14
|
biimtrid |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 16 |
15
|
expdimp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ≠ ( 0g ‘ 𝑅 ) ∧ 𝑧 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 17 |
10 16
|
biimtrrid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ¬ ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 18 |
17
|
necon4bd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
| 19 |
18
|
ralrimivva |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
| 20 |
19
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
| 21 |
9 20
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
| 22 |
21
|
anim2i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) → ( 𝑅 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 23 |
3 12 4
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ∨ 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) → 𝑅 ∈ Domn ) |
| 25 |
8 24
|
impbii |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅ ) ) |