Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p8d1.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
2 |
|
aks4d1p8d1.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
aks4d1p8d1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
aks4d1p8d1.4 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑀 ) |
5 |
|
aks4d1p8d1.5 |
⊢ ( 𝜑 → ¬ 𝑃 ∥ 𝑁 ) |
6 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
8 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
9 |
|
gcdnncl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) |
10 |
2 3 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) |
11 |
10
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
12 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
5
|
intnand |
⊢ ( 𝜑 → ¬ ( 𝑃 ∥ 𝑀 ∧ 𝑃 ∥ 𝑁 ) ) |
14 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
15 |
|
dvdsgcdb |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑀 ∧ 𝑃 ∥ 𝑁 ) ↔ 𝑃 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
16 |
8 12 14 15
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∥ 𝑀 ∧ 𝑃 ∥ 𝑁 ) ↔ 𝑃 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
17 |
13 16
|
mtbid |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( 𝑀 gcd 𝑁 ) ) |
18 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℤ ) → ( ¬ 𝑃 ∥ ( 𝑀 gcd 𝑁 ) ↔ ( 𝑃 gcd ( 𝑀 gcd 𝑁 ) ) = 1 ) ) |
19 |
18
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℤ ) ∧ ¬ 𝑃 ∥ ( 𝑀 gcd 𝑁 ) ) → ( 𝑃 gcd ( 𝑀 gcd 𝑁 ) ) = 1 ) |
20 |
1 11 17 19
|
syl21anc |
⊢ ( 𝜑 → ( 𝑃 gcd ( 𝑀 gcd 𝑁 ) ) = 1 ) |
21 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
22 |
12 14 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
24 |
8 11 12 20 4 23
|
coprmdvds2d |
⊢ ( 𝜑 → ( 𝑃 · ( 𝑀 gcd 𝑁 ) ) ∥ 𝑀 ) |
25 |
7 10 2
|
nnproddivdvdsd |
⊢ ( 𝜑 → ( ( 𝑃 · ( 𝑀 gcd 𝑁 ) ) ∥ 𝑀 ↔ 𝑃 ∥ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) |
26 |
24 25
|
mpbid |
⊢ ( 𝜑 → 𝑃 ∥ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) |