Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p8d2.1 |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
2 |
|
aks4d1p8d2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
aks4d1p8d2.3 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
4 |
|
aks4d1p8d2.4 |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
5 |
|
aks4d1p8d2.5 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑅 ) |
6 |
|
aks4d1p8d2.6 |
⊢ ( 𝜑 → 𝑄 ∥ 𝑅 ) |
7 |
|
aks4d1p8d2.7 |
⊢ ( 𝜑 → ¬ 𝑃 ∥ 𝑁 ) |
8 |
|
aks4d1p8d2.8 |
⊢ ( 𝜑 → 𝑄 ∥ 𝑁 ) |
9 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
11 |
10
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
12 |
3 1
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑅 ) ∈ ℕ0 ) |
13 |
11 12
|
reexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℝ ) |
14 |
|
prmnn |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℕ ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
16 |
15
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
17 |
13 16
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∈ ℝ ) |
18 |
1
|
nnred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
19 |
13
|
recnd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℂ ) |
20 |
19
|
mulid1d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 1 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) |
21 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
22 |
10
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
23 |
12
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑅 ) ∈ ℤ ) |
24 |
22 23
|
rpexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℝ+ ) |
25 |
|
prmgt1 |
⊢ ( 𝑄 ∈ ℙ → 1 < 𝑄 ) |
26 |
4 25
|
syl |
⊢ ( 𝜑 → 1 < 𝑄 ) |
27 |
21 16 24 26
|
ltmul2dd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 1 ) < ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ) |
28 |
20 27
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) < ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ) |
29 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
30 |
29 12
|
zexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ) |
31 |
15
|
nnzd |
⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
32 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
33 |
30 31
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) gcd 𝑄 ) = ( 𝑄 gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
34 |
|
0lt1 |
⊢ 0 < 1 |
35 |
34
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
36 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
37 |
36 21
|
ltnled |
⊢ ( 𝜑 → ( 0 < 1 ↔ ¬ 1 ≤ 0 ) ) |
38 |
35 37
|
mpbid |
⊢ ( 𝜑 → ¬ 1 ≤ 0 ) |
39 |
16
|
recnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
40 |
39
|
exp1d |
⊢ ( 𝜑 → ( 𝑄 ↑ 1 ) = 𝑄 ) |
41 |
40
|
eqcomd |
⊢ ( 𝜑 → 𝑄 = ( 𝑄 ↑ 1 ) ) |
42 |
41
|
oveq2d |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝑄 ) = ( 𝑄 pCnt ( 𝑄 ↑ 1 ) ) ) |
43 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
44 |
|
pcid |
⊢ ( ( 𝑄 ∈ ℙ ∧ 1 ∈ ℤ ) → ( 𝑄 pCnt ( 𝑄 ↑ 1 ) ) = 1 ) |
45 |
4 43 44
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 pCnt ( 𝑄 ↑ 1 ) ) = 1 ) |
46 |
42 45
|
eqtrd |
⊢ ( 𝜑 → ( 𝑄 pCnt 𝑄 ) = 1 ) |
47 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → 𝑄 ∥ 𝑁 ) |
48 |
|
breq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁 ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁 ) ) |
50 |
49
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → ( 𝑄 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
51 |
50
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → ( 𝑄 ∥ 𝑁 → 𝑃 ∥ 𝑁 ) ) |
52 |
47 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → 𝑃 ∥ 𝑁 ) |
53 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑃 = 𝑄 ) → ¬ 𝑃 ∥ 𝑁 ) |
54 |
52 53
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑃 = 𝑄 ) |
55 |
54
|
neqcomd |
⊢ ( 𝜑 → ¬ 𝑄 = 𝑃 ) |
56 |
|
pcelnn |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑅 ) ∈ ℕ ↔ 𝑃 ∥ 𝑅 ) ) |
57 |
3 1 56
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝑅 ) ∈ ℕ ↔ 𝑃 ∥ 𝑅 ) ) |
58 |
5 57
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑅 ) ∈ ℕ ) |
59 |
|
prmdvdsexpb |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt 𝑅 ) ∈ ℕ ) → ( 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ 𝑄 = 𝑃 ) ) |
60 |
4 3 58 59
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ 𝑄 = 𝑃 ) ) |
61 |
60
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ¬ 𝑄 = 𝑃 ) ) |
62 |
55 61
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) |
63 |
10 12
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℕ ) |
64 |
|
pceq0 |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℕ ) → ( ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
65 |
4 63 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 0 ↔ ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
66 |
62 65
|
mpbird |
⊢ ( 𝜑 → ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 0 ) |
67 |
46 66
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ 1 ≤ 0 ) ) |
68 |
67
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ ¬ 1 ≤ 0 ) ) |
69 |
38 68
|
mpbird |
⊢ ( 𝜑 → ¬ ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ¬ ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → 𝑝 = 𝑄 ) |
72 |
71
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt 𝑄 ) = ( 𝑄 pCnt 𝑄 ) ) |
73 |
71
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
74 |
72 73
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ( ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
75 |
74
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ( ¬ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ ¬ ( 𝑄 pCnt 𝑄 ) ≤ ( 𝑄 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
76 |
70 75
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑝 = 𝑄 ) → ¬ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
77 |
76 4
|
rspcime |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
78 |
|
rexnal |
⊢ ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
79 |
78
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
80 |
77 79
|
mpbid |
⊢ ( 𝜑 → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) |
81 |
|
pc2dvds |
⊢ ( ( 𝑄 ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ) → ( 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
82 |
31 30 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
83 |
82
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑄 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) ) ) |
84 |
80 83
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) |
85 |
|
coprm |
⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ) → ( ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ( 𝑄 gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 1 ) ) |
86 |
4 30 85
|
syl2anc |
⊢ ( 𝜑 → ( ¬ 𝑄 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ↔ ( 𝑄 gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 1 ) ) |
87 |
84 86
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) = 1 ) |
88 |
33 87
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) gcd 𝑄 ) = 1 ) |
89 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 ) |
90 |
3 1 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 ) |
91 |
30 31 32 88 90 6
|
coprmdvds2d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∥ 𝑅 ) |
92 |
30 31
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∈ ℤ ) |
93 |
|
dvdsle |
⊢ ( ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∈ ℤ ∧ 𝑅 ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∥ 𝑅 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ≤ 𝑅 ) ) |
94 |
92 1 93
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ∥ 𝑅 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ≤ 𝑅 ) ) |
95 |
91 94
|
mpd |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) · 𝑄 ) ≤ 𝑅 ) |
96 |
13 17 18 28 95
|
ltletrd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) < 𝑅 ) |